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ABSTRACT

Let Y — X be a connected G-Galois cover of affine varieties in character-
istic p, and suppose G = I'/ P for some p-group P. We show that there is
a connected I'-Galois cover Z — X dominating Y — X, and that Z = X
can be chosen to have prescribed behavior over a given closed subset of X.
There are several versions of this result, depending on whether ramifica-
tion is permitted, and whether adelic behavior is prescribed. The results
are deduced from a general assertion about embedding problems, which is
proven for profinite groups.

1. Introduction

This paper proves results on Galois covers of affine varieties in characteristic
p, showing that they behave extremely well under embedding problems with p-
group kernel. Namely, given such a connected Galois cover Y — X with Galois
group G =T'/P, where P is a p-group, is there a connected Galois cover Z —+ X
with group I' that dominates Y — X? Moreover, can Z — X be chosen with
prescribed local behavior? For example, if X’ is a closed subset of X, and if
the restriction Y/ — X’ of Y — X is dominated by a (possibly disconnected)
I'-Galois cover Z’ — X', then can Z — X above be chosen so as to restrict to
Z' over X'?7 This general type of problem is traditionally called an “embedding
problem,” since on the function field level a G-Galois extension is being embedded
into a I-Galois extension. Over an arbitrary field of characteristic p > 0 (e.g.
finite fields or Laurent series fields), this paper answers several questions of this
type in the affirmative.
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In particular, if Y — X is étale, then in the situation above there is such a Z
which is étale over Y and extends the given Z’ (Theorem 3.11). Moreover this
remains true even if Y — X is ramified, provided that its degree is prime to p
(Theorem 4.3). In the case of curves (where X’ is a finite set of points), it is true
even if Y — X is merely assumed to be tamely ramified (Theorem 5.14). In this
context the local condition corresponds to specifying the residue field extensions
over a given finite set of points — and this is a non-trivial condition if the base
field k is not algebraically closed. An “adelic” version for curves, in which X’
is taken to consist of spectra of local fields rather than points, is also shown
(Theorem 5.6).

Problems of this sort have been considered in several papers. The case that
X is the spectrum of a global field and X’ is adelic was shown in [Ne, Main
Theorem]; but there ramification at places outside of X’ is permitted and the
kernel of I' — G is allowed to be somewhat more general. (Only the number
field case was explicitly treated in [Ne], but the result carries over to the function
field case. Cf. also {SW].) In [Ka, Theorem 2.1.5], a related result was shown for
projective curves X over separably closed fields, with adelic conditions. (This
generalized a result of [Hal, §2], in the case G = 1; cf. [Ka, Theorem 2.1.4].) But
there the dominating cover Z need not be connected. On the other hand, in [Se2,
Theorem 1] (in connection with the solvable case of the Abhyankar Conjecture), it
was shown for X = A! over k = k that Z can be chosen so as to be connected, if no
local conditions are imposed. A version for affine curves viewed as rigid analytic
spaces (and with X’ taken to be an affinoid) appeared in [Ral, Prop. 4.2.5,
Cor. 4.2.6], using the machinery of Runge pairs, as part of the proof of the full
Abhyankar Conjecture for Al. A version motivated by formal schemes appeared
in [Ha2, Prop. 4.1], allowing Y — X to be ramified and of degree prime to p.
This result, which relied on the moduli of p-covers in [Hal], appeared in the
context of proving the Abhyankar Conjecture for general affine curves over k = k
(assuming [Ral]). Afterwards [Ra2], Raynaud pointed out the relationship with
[Ral, Prop. 4.2.5], and found a rigid analytic version that also allows Y — X
to be ramified and prime to p. This version could then be used instead of [Ha2,
Prop. 4.1], to prove the general case of the Abhyankar Conjecture by rigid analytic
(rather than formal) methods, assuming the case of Al. (The opposite is also
possible. That is, the rigid approach of [Ral] to the Abhyankar Conjecture for
A! could instead be replaced by a formal scheme approach; cf. [HS, Theorem 6].)
F. Pop later showed in [Po, Thm. B] how the original version [Ral, Prop. 4.2.5]
could already be used to prove the Abhyankar Conjecture for general curves, and
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even to prove that embedding problems with quasi-p kernel can be solved properly
(i.e. with Z connected) for affine curves over k = k (without local conditions).

The results of the current paper can be regarded as generalizations and simpli-
fications of the corresponding results of [Ral], [Ha2], and [Ra2]. Namely, the base
space need not be a curve, and the base field can be arbitrary (of characteristic
p) — thus providing arithmetic content. Also the machinery of rigid and formal
geometry (including the Runge pairs and the moduli of p-covers) are avoided in
the current version, by allowing a more elementary notion of “local condition.”
Just as the related results in those papers played a role in proving Abhyankar’s
Conjecture, the results here should be applicable to extensions of that conjecture
to more general spaces.

The assertions in this paper are for affine varieties, and break down for projec-
tive varieties. For example, in Theorem 5.14, the embedding problem is solved
by a tamely ramified connected cover of an affine curve; but no assertion is made
about the behavior over ir” nity. In fact, at least one point on the projective
completion must be allowed to ramify wildly. This is related to the statement of
the “Strong Abhyankar Conjecture” [Ha2, Thm. 6.2], where all but one branch
point can be taken to be tame.

The structure of this paper is as follows: Section 2 is purely group theoretic,
and provides a cohomological criterion for solving (group-theoretic) embedding
problems with p-group kernel and local conditions. The ideas for this section
are related to ideas in [Ka], [Se2], and [Ral]. Sections 3 and 4 then apply this
to embedding problems over affine varieties of arbitrary dimension in character-
istic p, by using that the appropriate fundamental groups have p-cohomological
dimension 1 and infinite p-rank, and by showing an appropriate surjectivity on
HV’s. Section 5 turns to results for curves, and shows the adelic result (Theorem
5.6) similarly. In order to show the result in the case that ¥ — X is tamely
ramified (Theorem 5.14), the strategy is reversed: Theorem 5.6 is combined with
group-theoretic results to obtain Theorem 5.14, and from that it follows that the
corresponding fundamental group has p-cohomological dimension 1.

ACKNOWLEDGEMENT: I would like to express thanks to Bob Guralnick for
group-theoretic discussions and for his comments on this manuscript. I would
also like to thank Claus Lehr and Rachel Pries for their comments as well.

2. Embedding problems with p-kernel

This section considers embedding problems for profinite groups with p-group
kernel. Propositions 2.2 and 2.3 provide cohomological criteria for the existence
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of solutions satisfying given local conditions. The approaches in [Ka, §2], [Se2,
§4] and [Ral, §4] appear here in a non-geometric setting. Later, in Sections 3-
5, the results here will be applied to fundamental groups of affine varieties in
characteristic p. We begin with some terminology in this general setting. Here
the notion of being “¢-solvable” will correspond geometrically to an embedding
problem being solvable with given local conditions.

IfII,T, G are profinite groups, then an embedding problem £ for II consists
of a pair of surjective group homomorphisms (a: I = G, f: ' = G). A weak
solution to £ consists of a group homomorphism G: II — T such that f3 = a.
If such a 3 is surjective, then it is called a proper solution to £. We will call £
weakly [resp. properly] solvable if it has a weak [resp. a proper] solution. The
kernel of £ is defined to be N := ker(f). We call £ a finite embedding problem
[resp. a p-embedding problem, an elementary abelian p-embedding problem,
etc.] if N is a finite group [resp. a p-group, an elementary abelian p-group, etc.].
An elementary abelian p-embedding problem £ = (a: I —- G,f: T — G) is
irreducible if the conjugation action of I' on P = ker f defines an irreducible
representation; or equivalently, if P is a minimal non-trivial normal subgroup of
.

Let £ = (1 - G, f:T — G) be an embedding problem for II, and let
¢1: I} — II be a homomorphism of profinite groups. Write G1 = a¢1(Il;) C G,
I'' = f~YG,) C T, and f; = flr,. Thus ¢3(€) := (a¢1: I} = Gy, f1: T1 = Gy)
is an embedding problem for II;, which we call the pullback of £ to II;. Note that
£ and ¢3(€) have the same kernel. If 8: II = T’ is a weak solution to £, then there
is an induced weak solution to ¢3(£), viz. the pullback ¢5(8) := 8¢1: II; = T'1.
Suppose that ¢ = {¢;};es is a family of homomorphisms ¢;: IT; — II of profinite
groups. We will say that £ is weakly [resp. properly] ¢-solvable if for every col-
lection {;} ;e of weak solutions to the pulled back embedding problems ¢3(£),
there is a weak [resp. proper] solution 3 to £ and elements n; € N = ker(£)
such that ¢3(8) = inn(n;) o B; for all j € J. (Here inn(n;) € Aut(T") denotes
left conjugation by n;.) Note that weak solutions 3; are considered in this defi-
nition, even in the proper case. For a geometric interpretation of these notions,
see Proposition 3.1.

The following reduction lemma allows us to restrict attention to the class of
finite p-embedding problems that are elementary abelian and irreducible:

LEMMA 2.1: Let ¢ = {¢;}jes be a family of homomorphisms ¢;: II; — II
of profinite groups. Suppose that every irreducible finite elementary abelian p-
embedding problem for I1 is weakly [resp. properly] ¢-solvable. Then so is every
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finite p-embedding problem for II.

Proof: Consider a finite p-embedding problem £ = (a: Il = G, f: T — G) for
II, together with weak solutions 3; to the pullbacks

5; = ¢;(£) = (Oé(ﬁji Hj — Gj,fi Fj - GJ)

We wish to show that £ has a weak [resp. proper] solution 3 such that #; (8)
agrees with each f; after conjugation by elements p; of P = ker(£). We proceed
by induction on the order of P. The desired conclusion is immediate if P = 1,
and so we assume that P is non-trivial.

Since P is a non-trivial p-group, it has a non-trivial center Z. Since P is normal
in T, and since Z is characteristic in P, it follows that Z is normal in I. Let A
be a minimal non-trivial normal subgroup of I' contained in Z. By minimality,
A is an elementary abelian p-group (since its subgroup of p-torsion elements is
also normal) and I' acts irreducibly on A via conjugation. Letting P = P/A and
[ =T'/A, we obtain exact sequences

(1) 15 P5Tha o1
and
(2) 1-A-T3T 51

Consider the embedding problem £ = (a: I1 = G, f: T — G) for II, and let
& = ¢;-‘(£_') = (a¢;: I; = Gj, f;: Tj = G;) be the pullback of £ from II to II;.
Since P is strictly smaller than P, it follows by the inductive hypothesis that £
is weakly [resp. properly] ¢-solvable. That is, there is a weak [resp. a proper]
solution 8 to £ that induces the weak solutions 3; := gB; to &; up to conjugation
by elements 5; € P (i.e. B; = inn(p;)B¢;). Choose p; € P over p; € P. Let
e =) cT,lete I° = go([°) C T, and let g° = g|re. [Thus I'° = T,
I° =T, and ¢° = g in the proper case.] Now £° = (B: I - I'°,g°: I° —» I°) is
an irreducible finite elementary abelian p-embedding problem for IT with kernel
A, and for each j € J the map inn(pj‘l)ﬂ]- is a weak solution to the pullback
£ = ¢3(E°) of £° from II to II;. So by hypothesis there is a weak solution
B: I1 = I'° [resp. a proper solution §: I — I'] to £° that induces each inn(pj_l)ﬁj
up to A-conjugacy. The map £ is then the desired weak [resp. proper]| solution
to £ inducing the 8;’s up to P-conjugacy. 1

If f: T — G is a (continuous) homomorphism of profinite groups, then there is
an induced map f.: Hom(IL,T') — Hom(II, G), given by f.(y) = fo~. Also, if
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¢1: II; — II is a homomorphism, then there is an induced map ¢7: Hom(Il, G) —
Hom(II;,G), given by ¢7(7) = v o ¢ for v € Hom(II,G). Consider a family
¢ = {¢;j}jes of homomorphisms ¢;: II; — II. Then there is an induced map
¢*: Hom(IL,G) — [];c; Hom(Il;, G), given by ¢} on the jth factor. Similarly,
if II acts on an abelian group A, then so does each II,; (via ¢;), and we ob-
tain induced homomorphisms ¢%: Z'(II, A) — Z'(II;, A) and ¢*: Z'(1I, A) —
[Lies 2 (11, A) on the corresponding cocycle groups. (Here ¢;(v) = 7o ¢; for
v € Z'(11, A).) These in turn induce homomorphisms ¢3: H'(II, A) — H(Il;, A)
and ¢*: H(I[, A) - HjeJHl(Hj,A) on cohomology groups. We will say that
the family ¢ is p-dominating [resp. strongly p-dominating] if ¢*: H(II, P) —
[LesH 1(I1;, P) is surjective [resp. surjective with infinite kernel] for every non-
trivial finite elementary abelian p-group P on which II acts continuously.

As the following two propositions show, (strongly) p-dominating families ¢ are
well-behaved, in the sense that every solvable p-embedding problem must also
be ¢-solvable (in the strong or weak sense, respectively). In proving Proposition
2.2, we will need to twist a given weak solution v € Hom(IL, I') in order to satisfy
the local conditions corresponding to a p-dominating family ¢. This twisting will
be via an appropriate 1-cocycle, and will be defined as follows:

Let A be an abelian normal subgroup of a finite group I', let II be a profinite
group, and let ¥ € Hom(II,I'). Then IT acts on A via y and the conjugation action
of I' on A. With respect to this action, we may consider the group Z(II, A)
of l-cocycles. If @ € Z'(II, A) then we may consider the map a-v: I - T
given by (a - v)(n) = a(r)y(rn), for # € II. Here a -+ € Hom(II,T') because
a is a cocycle. If we let f: I' = G := I'/A be the quotient map, inducing
fe: Hom(I1,T') = Hom(II,G), then o + a - v is a bijection from Z!(II, A) to
the fibre of f, containing 7. Under this bijection, if a € A = C°(Il, A) then
da € BY(II, A) is sent to inn(a=1) o y. Also, the above cocycle group Z!(IL, A)
depends only on the fibre of f, containing v, and (a,¥') = a -+ defines a
“twisting” action of this Z1(II, A) on that fibre. (In the special case that A is
central in T, the action of Il on A is trivial. The groups Z(II, 4), H(IL, A),
Hom(II, A) then all coincide and are independent of -y, and we obtain a twisting
action of this common group on Hom(II,T').)

Recall (cf. [Sel, I, 3.4, Proposition 16]) that if p is a prime number and II is a
profinite group, then cd,(IT) < 1 if and only if every finite p-embedding problem
for II has a weak solution. The proof of the following result is related to ideas in
the proofs of [Ka, Theorem 2.1.5] and [Ral, Prop. 4.2.5] (where they appeared
in more geometric contexts).
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PrROPOSITION 2.2: Let p be a prime number and let II be a profinite group.
Then the following conditions are equivalent:
(i) Every finite p-embedding problem for Il is weakly solvable (i.e. cdp(IT) < 1).

(i) Every finite p-embedding problem for Il is weakly ¢-solvable, for every
p-dominating family of homomorphisms ¢ = {¢;: II; = II}c;.

Proof: The implication (ii) = (i) is immediate, by taking the II;’s to be trivial.
So we prove (i) = (ii).

Let ¢ = {¢;: II; = I} ¢ s be a p-dominating family of homomorphisms, and let
£ =(a:l -G, f:T = G) be a finite p-embedding problem for II, with kernel
P. We wish to show that £ is ¢-solvable. By Lemma 2.1 it suffices to prove
this under the hypothesis that P is an elementary abelian p-subgroup of T that
properly contains no non-trivial normal subgroups of I" (corresponding to the
representation being irreducible). Let +: II = T' be a weak solution to £, and
assume for each j that §;: II; = I'; C I' is a weak solution to the pullback
& = ¢5(€) = (ag;: II; — Gj, f;: Tj — G;). We need to show that £ has a weak
solution 8 that induces each 3; up to P-conjugacy.

As above, we have a natural action of Z1(II, P) on the fibre of f,: Hom(II,T) —
Hom(II, G) containing y. The same assertion holds with II, I" replaced by II;, T,
and with v replaced by v; = ¢j(v): I; — TI';, the pullback of v from II to
I1,. Here the action of Z!(Il;, P) is compatible with that of Z(II, P). Since 3;
and 7; are both weak solutions to £;, they satisfy f;8; = a¢; = f;v;; and so
Bj,v; € Hom(IL;,T;) lie in the same fibre of f;.: Hom(II;,T';) — Hom(Il;, G;).
Thus there is an element p; € Z(II;, P) such that p; -v; = Bj. Let p;
be the image of p; in H'(I;, P) and let p = {Bj}j € [1, H'(11;, P). Now
¢*: H'(11, P) - [], H'(1l;, P) is surjective (by the p-dominating hypothesis, if
P # 1; and trivially, if P = 1). So there is an element p € H'(II, P) such that
¢*(p) =

Let p € Z'(I1, P) be a lift of p (i-e. a representative of the class p, modulo
BY(I1, P)). Let 8 = p-y € Hom(II,T'). Then 3 is a weak solution to £ that induces
each §; up to multiplication by a coboundary dp; € B'(Il;, P) ¢ Z'(Il;, P) (for
some p; € C°(I1;, P) = P). But multiplication by dp; is the same as composition
by inn(pJTl), i.e. right conjugation by p;. So 8 induces each 3; up to P-conjugacy,
as desired. |

Recall that the p-rank of a profinite group II is the dimension of the Fp-vector
space Hom(Il, Z/pZ) of continuous homomorphisms. Equivalently, the p-rank is
the rank of the maximum pro-p quotient of II.
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The proof of the following result is related to ideas in [Se2, §4] and in the proof
of [Ral, Prop. 4.2.5).

THEOREM 2.3: Let p be a prime number and let II be a profinite group of infinite
p-rank. Then the following conditions are equivalent:
(i) Every finite p-embedding problem for Il is weakly solvable (i.e. cdp(II) < 1).
(ii) Every finite p-embedding problem for 1l is weakly ¢-solvable, for every
p-dominating family of homomorphisms ¢ = {¢;: II; = I},c;.
(iii) Every finite p-embedding problem for 11 is properly solvable.
(iv) Every finite p-embedding problem for II is properly ¢-solvable, for every
strongly p-dominating family of homomorphisms ¢ = {¢;: II; = I} ;¢ ;.

Proof: The equivalence of (i) and (ii) was given in Proposition 2.2, and it is
trivial that (iii) = (i). The implication (iv) = (iii) follows from the assumption
that IT has infinite p-rank, by taking the II;’s to be trivial. So it suffices to show
that (i) = (iv).

So let ¢ = {¢;: Il; = II},cs be a strongly p-dominating family of homomor-
phisms. We wish to show that if £ = (a: I - G, f: T = G) is a p-embedding
problem for I, then £ is properly ¢-solvable. By Lemma 2.1, it suffices to do this
in the case that the kernel of f is an elementary abelian p-group P = (Z/pZ)™
that properly contains no non-trivial normal subgroups of I'. That is, we wish to
show that for such an &, and for any family of weak solutions 3; to &; = ¢3(£),
there is a proper solution 8: II — I" to £ together with elements p; € P such
that ¢3(8) = inn(p;)B; € Hom(Il;,T') for each j € J. This is trivial if P = 1; so
we may assume P # 1.

By (ii), there is a weak solution Sy € Hom(IL,T') to £ together with elements
p; € P such that ¢;-‘(ﬁo) = inn(p;)B;. Since fBy = a: I = G is surjective, it
follows that I is generated by Go(Il) and P = ker f. Now [o(II) N P is a normal
subgroup of Gy(II) (since P is normal in I') and of P (since P is abelian). Since
T is generated by Go(II) and P, it follows that Fo(II) N P is a normal subgroup
of I.

If By(II) N P is all of P, then the image of By contains P and hence it is all of
I' (again since I is generated by Go(II) and P). So in this case By is the desired
proper solution and we are done.

Thus we may assume that Gy(II) N P is strictly contained in P. But by the
irreducibility hypothesis on P, it follows that Go(II) N P is then trivial. Hence the
restriction of f: I' & G to Fo(II) is injective, and thus is an isomorphism onto G
(being surjective, since f@y = «). This implies that fy factors through G; i.e. B
is in the image of Hom(G,T') — Hom(IL,T').
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Since 1 - P - I' > G — 1 is a short exact sequence with abelian ker-
nel, there is an induced conjugation action of G on P (by choosing represen-
tatives in T'). This in turn yields actions of Il on P (via o: I = G) and
of II; on P (via ao¢;: II; - G). Let F be the kernel of the induced map
¢*: H'(I1, P) - []; H'(Tl;, P), taking cohomology with respect to these actions.
Since F is infinite (by the hypothesis on ¢) while H!(G, P) is finite, there is an
element p € F C H'(II, P) that is not in the image of o*: HYG,P) - H'(11, P).
Let p € Z'(I1, P) be a lift of p. Thus we may consider 8 := p- fp € Hom(II, T).
Here 8 maps to a under Hom(II,T'} — Hom(II, G), because By — « under this
map and because P = ker(I' — G). That is, § is a weak solution to the embedding
problem . Since p € F = ker ¢* = (), ker ¢}, we have that pg; = ¢3(p) = 1.
So ¢3(8) = Bo; = pd; - Bod; = Pod; = ¢;(Bo) = inn(p;)B;, as desired.

It remains to show that 3 :II — T is surjective, and thus a proper solution to
the embedding problem £. Now f is in the image of Hom(G,T') - Hom(IL,T'),
whereas p is not in the image of Z'(G, P) = Z}(I1, P); so B = p- o is not in the
image of Hom(G,T') — Hom(II,T'). Thus the restriction of f : T' — G to B(II) is
not injective. That is, 8(I1) N P is a non-trivial subgroup of P. But (I N P is
normal in I'. The irreducibility hypothesis thus implies that S(II) N P = P; i.e.
P C B(M). Since I' is generated by P and B(II), it follows that g is surjective.
[ |

3. p-Embedding problems for affine varieties: unramified case

We now turn to the main theme of this paper, viz. p-embedding problems in a
geometric context, for fundamental groups of affine varieties in characteristic p.
The group-theoretic results of Section 2 are applied here, and in the following
sections, in order to obtain results that assert that covers Y — X with Galois
group G = I'/P (where P is a p-group) can be dominated by I'-Galois covers
Z — X with Z — Y étale and with prescribed local behavior. This section
considers the case in which Y — X is étale (Theorem 3.11), while Section 4
allows ¥ — X to be ramified (but adds another restriction). Stronger results
will be shown in the case of dimension 1, in Section 5.

The link between the group theory of Section 2 and the geometry of these
sections is made explicit below in Proposition 3.1, which permits Theorem 2.3
to be applied to fundamental groups to obtain geometric results. To apply The-
orem 2.3, it is first observed that the fundamental group of an affine variety in
characteristic p has cd, < 1 (Corollary 3.3) and infinite p-rank (Corollary 3.7),
and then it is shown that the local conditions are strongly p-dominating in the
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sense of §2 (Proposition 3.8). As a consequence, if Y — X is étale, the existence
of the desired cover Z — X is shown (Theorem 3.11), in a result parallel to
[Ral, Corollary 4.2.6] (and indirectly drawing on ideas of [Se2, §4]). In the next
section, a variant (Theorem 4.3) is shown in which ¥ — X is permitted to be
ramified but is required to have degree prime to p.

We begin by recalling some basic terminology. An étale cover (“revétement
étale”) f: ¥ — X is a morphism of schemes that is finite and étale [Gr, I,
Def. 4.9]. The Galois group Gal{(Y/X) of Y —+ X consists of the automorphisms
g of Y such that fg = f. An étale cover f: Y — X is Galois if X and Y are
connected and Gal(Y/X) acts simply transitively on each generic geometric fibre.
If Y — X is an étale cover (not necessarily connected), if :: G — Gal(Y/X) is a
homomorphism of finite groups, and if G acts simply transitively on each generic
geometric fibre (via ¢), then we will say that Y —» X and the G-action together
constitute a G-Galois étale cover.

Let X be a connected locally Noetherian scheme with a geometric base point
£. A pointed étale cover of (X, €) consists of an étale cover f: Y — X and a
geometric point n € Y such that f(n) = €. The pointed Galois étale covers of
(X, ) form an inverse system of pointed schemes, and their Galois groups form
an inverse system of groups whose inverse limit is the algebraic fundamental
group II = m(X,€). (Cf. [Gr, V §7].) If G is a finite group, then there is a
bijection between the homomorphisms a: II — G and the isomorphism classes
of pointed G-Galois étale covers (Y, 1) — (X, £), under which surjective homo-
morphisms correspond to connected covers. Composing a with conjugation by
g € G has the effect of changing the base point of Y (over £) from 7 to g(n), but
it does not affect the isomorphism class of the underlying (unpointed) G-Galois
cover. Thus isomorphism classes of (unpointed) G-Galois étale covers of X are
in bijection with eguivalence classes of homomorphisms a: II — G, two such ho-
momorphisms being declared equivalent if they differ by an inner automorphism

of G.

In the above context, if f: '»G is a surjection of finite groupsand o : I » G
is a surjective homomorphism, then a weak solution 3: II — I" to the embedding
problem & = (a: I = G, f: I' = G) corresponds to a pointed I'-Galois étale
cover (Z,¢) — (X,€) that dominates (Y,7). Here Z is connected if and only if
B is a proper solution to £. If ¢: X; — X is a morphism of connected schemes,
then G-Galois étale covers of X pull back to G-Galois étale covers of X; (and
such a pullback need not be connected, even if the given cover of X is). On the
level of equivalence classes of homomorphisms, pullback may be interpreted as
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follows:

Let &, &1 be geometric base points of X, X; respectively. Then there is a natural
homomorphism 9,: m1(X1,£1) = 71(X,¥(&1)). Since X is connected, an isomor-
phism ¢1: (X, ¥(&1)) = m(X,€) is indugi(_i/ by choosing a geometric point &
over £ on the pro-universal cover ()2¢(51),¢(§1)) of (X,1(£1)). (The choice of £
corresponds classically to choosing a homotopy class of paths from (&) to &; and
varying that choice will vary ¢; by an inner isomorphism. Cf. {Gr, V.5, V.7].)
Composing, we obtain a map ¢; o ¥, m(X1,&) = m(X,€). The pointed G-
Galois étale cover of X corresponding to a: m1(X,£) — G then pulls back to the
pointed G-Galois étale cover of X; corresponding to a o1y 09, m(X1,&) = G.
Forgetting the base points, the unpointed G-Galois étale covers of X pull back
to such covers of X, as noted above; and this pullback depends only on the
cover, i.e. is independent of the choice of ¢1. To the extent that we will focus on
unpointed G-Galois covers, we will often suppress the base points and the iso-
morphism ¢, and then simplify notation by just writing ,: 71 (X;) — m1(X) for
the map between fundamental groups. Thus the equivalence class of the pullback
a ot m(X1) = G of a: m(X) = G will be well defined, corresponding to the
pullback of G-Galois covers.

The above remarks, together with the definition of “¢-solvable” in Section 2,
yield:

PROPOSITION 3.1: Let ¥;: X; = X (for j € J) be a family of morphisms of
connected schemes. Let ¢; = ¢j.: m(X;) = 11(X) and ¢ = {¢;};. Let f: T —
G be a surjective homomorphism of finite groups, let Y = X be a connected
G-Galois étale cover corresponding to a homomorphism a: m1(X) — G, and let
Y; = X; be the pullback via 1;. Then the following are equivalent:

(i) For each choice of I'-Galois étale covers Z; — X; that dominate Y; —
X; (for j € J), there is a [connected] I'-Galois étale cover Z — X that
dominates Y — X and pulls back to each Z; — X;, up to isomorphism.

(ii) The embedding problem £ = (a: m(X) = G, f: T — G) is weakly [resp.
properly] ¢-solvable.

Proof: 1In the statement of the proposition, regard m(X) and m(X;) as the
fundamental groups of X, X; with respect to geometric base points ¢,¢;, and
choose isomorphisms ¢;: m1 (X, ¥(&;)) = m1(X,€) as above. Given Y — X, the
choice of map a: m(X,£) — G corresponds to a choice of base point 7 for Y over
¢; and the composition atj¢;: m1(X;,€;) = G corresponds to a choice of base
point 7; for Y; over &;.

Suppose first that condition (i) holds, and let 8;: 71(Xj;,€;) = T be weak
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solutions of the induced embedding problems &; for m(X},&;). Thus f8; =
at;d;: m1(X;5,€5) = G, and B; corresponds to a pointed I'-Galois cover Z; — X;
that dominates the pointed G-Galois cover Y; — X;. By (i), there is a [connected]
I-Galois étale cover Z — X that dominates Y — X and pulls back to each
Z; = X, as an unpointed I'-Galois étale cover of X;. Choose a base point {
for Z over n; this corresponds to a weak [resp. proper] solution §: Il — T to
the embedding problem £. The composition Bt;¢;: m1(X;,€;) — I is a solution
to £; corresponding to a pointed I'-Galois cover of X;; and by hypothesis, the
underlying unpointed I-Galois cover agrees with Z; — X; (although the base
points might not agree). Thus §; and fBt;¢; differ by an inner automorphism of
I’ — viz. by the element g; € I" that takes the base point of one to the base point
of the other. But since the reductions to G of these two pointed I'-Galois covers
of X; are both (Yj,7;) = (Xj,&;), it follows that g; € N = ker(f: ' — G).
Thus the weak [resp. proper] solution 3 to £ induces the given weak solutions 3;
to &, up to conjugation by elements of N. This shows that (ii) is satisfied.

Conversely, suppose that condition (ii) holds, and let Z; — X; be I'-Galois
étale covers that dominate Y; — X;. Choosing a base point (; for Z; over
nj, we obtain corresponding weak solutions g;: m1(X;,§;) — I to the induced
embedding problems &;. By (ii), there is a weak [resp. proper] solution 3 to £
that induces each 3; up to conjugacy by N. The map §: II — I corresponds to a
[connected] pointed I'-Galois cover Z — X which dominates Y — X and whose
pullback to X; agrees (as an unpointed I'-Galois cover) with Z; = X;. So (i) is
satisfied. [

Via Proposition 3.1, we may obtain results about dominating covers with local
conditions by applying Theorem 2.3 to fundamental groups. In order to show
that the hypotheses of 2.3 are satisfied, we will first need to verify that certain
fundamental groups have p-cohomological dimension < 1. We do so using the
following well-known result, which is stated here for the sake of completeness, and
whose proof is embedded in those of [Se2, Prop. 1] and [Ka, Lemma 1.4.3]. Cf.
also [PS, Thm. 4.13], which provides a detailed proof in the setting of Corollary
3.3(b) below.

PROPOSITION 3.2: Let X be a connected Noetherian scheme.

(a) Let F be the locally constant finite étale sheaf on X associated to a finite
71(X)-module F. Then H'(m(X),F) = HL(X,F) and H*(m(X), F) injects
into H%(X,F).

(b) Let £ be a prime number. If ¢dg(X) < 1 then cde(m (X)) < 1.

Proof: (a) Over the pro-universal cover X of X, we have that F| % is the con-
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stant group F. Moreover, for any finite étale Y — X, any a € HL(Y, Fly) is
represented by a finite étale F-Galois cover of Y, and is trivialized over X. Thus
He}t(Xfflff) =0.

According to the exact sequence of low degree terms [Mi, p. 309] coming from
the Hochschild-Serre spectral sequence H?(m(X), H%(X,F)) = HEMY(X,F)
[Mi, I Thm. 2.20, Remark 2.21(b)], we have that

0 — H'(m(X), Ho (X, Flg)) = Heo(X, F) = HO(m(X), Hy(X, Flg))
— H*(m(X), H(X, F|3)) —» HL(X, F)

is exact. Since HL(X,F|z) = 0 and HY(X,F|z) = F, we obtain that
Hi(m(X), F)) » HL (X, F) and H(m(X), F) — HZ(X, F).

(b) Let F be a finite f-torsion m;(X)-module, corresponding to a locally
constant f-torsion finite étale sheaf 7. Then HZ%(m(X),F) < HZL(X,F)
by (a). By hypothesis, HZ(X,F) = 0. Hence H%*(m(X),F) = 0. Thus
Cdg(ﬂ'l(X)) S 1. [ |

COROLLARY 3.3: (a) (Serre, [Se2, Prop. 1)) If X is a connected affine curve over
a separably closed field k, then cd(m (X)) < 1.

(b) ([Se3, §2.2], [PS, Thm. 4.13]) If X is a connected projective curve over a
separably closed field k of characteristic p > 0, then cdp(m1(X)) < 1.

(c) If X is a connected Noetherian affine scheme of characteristic p > 0, then
cdp(m (X)) < 1.

Proof: (a) Let p = chark. For every £ # p, we have that cds(X) <1 by [AGV,
IX, Cor. 5.7]. On the other hand if £ = p, then the same conclusion holds by
[AGV, X, Thm. 5.1]. So cde(m1(X)) < 1 for all £, by Proposition 3.2(b). That
is, ed(m (X)) < 1.

(b) By [AGV, X, Cor. 5.2], cdp(X) < dimX = 1, so the conclusion follows
from the proposition.

(c) By [AGV, X, Thm. 5.1], cdp(X) < 1. So the conclusion again follows.
| |

In order to verify the hypotheses of Theorem 2.3, we will use Corollary 3.3(c)
above and Corollary 3.7 and Proposition 3.8 below. For those results, we need
some preparation.

LEMMA 3.4: Let R C S be an integral extension of integral domains, and let I
be a non-zero ideal of S. Then I N R is a non-zero ideal of R.
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Proof: This is a special case of [Bo, V, §2.1, Cor. 1 to Prop. 1], taking A = R,
A'=S8,d =1,p=(0), p = (0). (One can alternatively proceed as in the
remark at [La, p. 10].) |

LEMMA 3.5: Let X be a Noetherian normal integral scheme and let ¥ be the set

of points of X of codimension 1. Then neez Ox ¢ is the ring of global functions
on X.

Proof: If U = Spec R is any affine open subset of X, then R is a Noetherian inte-
grally closed domain, and hence a Krull domain [Bo, VII, 1.3, Cor. to Lemma 1].
Thus R = ﬂgezu Ox,¢, where Xy is the set of points of U of codimension 1
(corresponding to the height 1 primes of R) [Bo, VII, 1.6, Theorem 4]. Since this
is true for each U, the conclusion follows. |

For any ring R of characteristic p, we define the F,-linear map p: R — R by
p(r) = rP—r. If Ris a domain and a;,...,am € R, then consider the R-algebra S
given by adjoining elements 1, ..., Zm subject to ¥ —z; = a; (fori =1,...,m).
This extension R C S is finite, étale, and P-Galois, where P is an elementary
abelian p-group of rank m. Conversely, every P-Galois finite étale extension of R
is of this form, by Artin—Schreier theory. Moreover S is a domain if and only if
the images of the elements a; in R/p(R) are Fp-linearly independent. Thus the
p-rank of m (Spec R) is the dimension of R/p(R) as an Fp-vector space.

For any ring S and any n > 0, the map p : S® — S is defined for the ring S™,
and it is given by p : § — S on each coordinate. If M is a subset of 5", then we
may consider the image of M under g; this is also a subset of S™.

LEMMA 3.6: Let k be a field of characteristic p, let R be a finitely generated k-
algebra which is an integral domain but not a field. Let S be an integral domain
that contains R and is finite as an R-algebra. Let I be a non-zero ideal of R, and
let M be a non-zero R-submodule of S™. Then IM/(IM N p(M)) is an infinite
dimensional F,,-vector space.

Proof: Let My,...,M, C S be the images of M under the n projection maps
mj: S* = S. Then each M; is an R-submodule of S, and some M; is non-zero.
Now 7;(IM Np(M)) C IM;Np(M;), and so the map 7; induces a surjective Fp-
homomorphism IM/(IMNp(M))—IM;/(IM;Np(M;)). Thus IM/(IMNp(M))
is infinite dimensional if IM; /(IM;Np(M;)) is. So replacing M by M;, it suffices
to prove the result under the assumption that M is a non-zero R-submodule of
S (i.e. that n = 1).

By Noether Normalization [Bo, V, 3.1, Theorem 1], there exist algebraically
independent elements z1,...,zq4 € R such that R is integral over the polynomial
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ring T = k{z1,...,z4] C R, and such that J := I NT is generated by z1,...,zs
for some h > 0. Here d > 0 since R is not a field. Also, R is finite over T'
since it is integral over T and is finitely generated as a T-algebra (since it is
finitely generated over k). Moreover J # (0) by Lemma 3.4, and so h > 0; thus
zneJcCl.

Now T is the ring of functions on A? C P¢. Let V be the normalization of P¢
in the fraction field L of S. Then m: V — P¢ is a finite morphism of Noetherian
normal integral projective varieties, and V' := n~1(A¢) is an affine open subset of
V whose ring of functions $’ is the integral closure of S. Also, V -V’ = n~1(H),
where H C P} is the hyperplane at infinity; the associated reduced scheme is a
union of finitely many divisors D; on V. Since V is normal, for each i there is a
discrete valuation v;: L* — Z associated to D;. Note that v;(z1) < 0, since z;
has a pole along H.

By Lemma 3.5, if an element s € S’ = O(V’) is regular at the generic point
of each D;, then it is a global function on the projective variety V and hence is
constant (i.e. lies in a finite field extension of k). So for each non-constant s € S,
there is an 4 such that v;(s) < 0. Let a be the smallest (non-negative) integer such
that v;(m) is of the form —p®b for some %, some non-constant m € M C ', and
some positive integer b prime to p. (Here not every element in M is constant,
since M C S is a non-zero R-module. So the minimum is being taken over a
non-empty subset of the non-negative integers, and is thus well defined.) Fix
such a choice of 7 and m corresponding to a. For each positive integer j, consider
the element m; := z{paﬂ'm € IM. Then v;(m;) = jp®*tlv;(z1) — p®b. Thus
p*|vi(m;) (ie. p* strictly divides v;(m;)) and vi(m;) < 0 for all j, and the
integers v;(my;) are distinct, since v;(z;) < 0.

Now consider any non-trivial Z/pZ-linear combination c of the elements m; (i.e.
any linear combination with at least one non-zero coefficient). Since p*|v;(m;) <
0 and the integers v;(m;) are distinct, it follows that c satisfies p*|v;(c) < 0. Let
m' € M. If m’ satisfies v;(m’) > 0, then v;(p(m')) > 0 and hence ¢ # p(m')
(since vi(c) < 0). On the other hand, if instead m’ € M satisfies v;(m’) < 0, then
the minimality of a implies that p®|v;(m’) < 0 and so p**!|v;(p(m')); so again
¢ # p(m') (since p*|vi(c)). This shows that such a linear combination ¢ does
not lie in p(M). Thus the elements m; € IM C S (for j = 1,2,...) are linearly
independent modulo p(M); and so IM/(IM N p(M)) is an infinite dimensional
[Fp-vector space. 1

COROLLARY 3.7: Let k be a field of characteristic p, and let R be a finitely
generated k-algebra which is an integral domain but not a field. Then m;(Spec R)
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has infinite p-rank.

Proof: As remarked above, the p-rank of m; (Spec R) is equal to the dimension
of R/p(R) as an Fp-vector space. This dimension is infinite by Lemma 3.6, by
taking I to be the unit ideal, M = R=§,and n=1. ]

The following result parallels [Ral, Prop. 4.2.1], as does its proof (which uses
Lemma 3.6). But the proof is able to be much simpler here than for the result
in [Ral], since it deals just with subschemes rather than affinoids. Note that the
strategies both here and in [Ral, §4.2] are inspired by that of [Se2, §4]. (For the
definition of a (strongly) p-dominating family ¢ = {¢;};¢ s, see Section 2.)

PRrROPOSITION 3.8: Let X = Spec R be an irreducible affine variety of dimension
> 0, and of finite type over a field k of characteristic p > 0. Let X' be a closed
subset, strictly contained in X, and having connected components Xi,...,X,.
Let ¢;: m(X;) — m1(X) be induced by the inclusions X; — X, and let ¢ =
{#;};. Then ¢ is strongly p-dominating.

Proof: Let II = n1(X) and II; = m((X;). Let P = (Z/pZ)" be a non-trivial
finite elementary abelian p-group together with a continuous action of II (so
n > 0). We wish to show that the induced homomorphism ¢*: H(II, P) —
[1; H'(11;, P) is sutjective with infinite kernel.

Under the above action, the finite group P becomes a II-module, and corre-
sponds to a locally constant finite étale sheaf F of Z/pZ-vector spaces over X.
(Namely, if U is a connected étale open subset of X, then F(U) = P™(U) the
subgroup of P fixed by 7, (U).) Similarly, for each j the II;-module P corre-
sponds to a finite locally constant étale sheaf F; of Z/pZ-vector spaces over Xj.
Over X we have the Artin—Schreier exact sequence

0-Z/pZ -G, G, >0

of étale sheaves of Z/pZ-vector spaces [Mi, p. 67], where p(a) = a? —a. Tensoring
over Z/pZ with F we obtain an exact sequence

(1) 0F-sMEM=0

of étale sheaves on X, where M is a locally free sheaf of G,-modules of rank n in
the étale topology. Here M is induced by a locally free sheaf Mz of rank n in the
Zariski topology [Mi, p. 134]; in particular Mz is coherent. Since X = SpecR
is affine, and since R is Noetherian (being of finite type over k), there is an
equivalence of categories between coherent Ox-modules (in the Zariski sense)
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and finite R-modules [Ht, II, Prop. 5.4]. Under this equivalence, the locally free
Zariski sheaf Mz corresponds to a locally free R-module M of rank n > 0. Here
the map p: M — M corresponds to a Z/pZ-linear map p: M — M.

More explicitly, the action of I on P has a kernel ® C II which is normal and
of finite index, and which corresponds to a Galois finite étale cover W — X (of
Galois group II/®). The action of ® = m(W) on P = (Z/pZ)™ is trivial, and
so M|w is free of rank n. Thus M(W) = S™, where W = Spec S. By the sheaf
axiom, M is the equalizer of the two natural maps M(W) —» M(W xx W),
and in particular M is an R-submodule of S". Also, the map p: M — M is
the restriction of the corresponding map on M(W) = 5™, which is given by the
classical map g: S — S on each coordinate.

Since X is affine and since M is induced by the coherent Zariski sheaf Mz
corresponding to the R-module M, we have H*(X, M) = M and H}(X,M) =0
(by comparison of étale and Zariski cohomologies for coherent sheaves [Mi, III
3.8]). So the exact sequence of sheaves (1) gives rise to the exact sequence

(2) ME& M- HY(X,F)-0.

That is, HY(X,F) = M/p(M). Similarly, for each j, we have H}(X;, F;) =
M;/p(M;), where M; = M/I; M and I; is the ideal of X;. Moreover H(X, F) =
HY(11, P) and HY(X;,F;) = H(II;, P) by Proposition 3.2(a). So

ﬁHl(Hj,P) = ITIHI(X]"]:J')a

Jj=1 Jj=1

and ¢* may be identified with the map M/p(M) — [T;_; M;/p(M;). It remains
to show that this map is surjective with infinite kernel.

Since Xj,..., X, are pairwise disjoint closed sets, their ideals I1,...,I. C R
are pairwise relatively prime. So M — M’ := [[/_; M; is surjective by the
Chinese Remainder Theorem. Hence so is the composition M — l_[;=1 M; —
[T;=1 M;/p(M;), which factors through M/p(M) — [T;_; M;/p(M;). So that
latter map is also surjective, as desired.

Finally, we show that the map M/p(M) — H;=1 M; [p(M;) has infinite kernel.
Let I = n;:1 I;, so that M’ = M/IM. Now I,M # 0; the R-module M is
contained in S™; and S is finite over R. So by Lemma 3.6, IM/(IM N p(M))
is infinite. But IM/(IM N p(M)) is contained in the kernel of M/p(M) —
M'/p(M') = [T;=1 M;/p(M;). Thus this kernel is indeed infinite. [
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Example 3.9: Let p = 3, let P = Z/3Z, let R = k[z,z7!] and let X = Spec R.
Also, let S = k[y,y~"] where y2 = z, and let Y = SpecS. Then C := Gal(Y/X)
is cyclic of order 2, and there are two actions of C on P, each inducing an action of
II = 7;(X) on P and yielding a p-embedding problem £ = (a: I = C, f: T = C).

The first of these two actions is the trivial one, corresponding to the case that
T is cyclic of order 6. In this case the R-module M in the proof above is R itself,
viewed as a submodule of S, and the map p: M — M is just the usual map p
on R. Here ker(p) = H(II, P) = Z/3Z and cok(p) = H'(Il, P) = Hom(Il, P) =
R/p(R), which is isomorphic to €D 3 )1 2"k if k is algebraically closed.

The second of these two actions, in which the generator of C acts on P by
a — —a, corresponds to the case that I' = S3. Here M is again a free R-module
of rank 1, but the map p: M — M is not the obvious one. This is because M is
now the submodule yR = @(2’7‘):1 y™k C S. Here ker(p) = H([, P) = 0, and
cok(p) = H'(II, P) = M/p(M) is isomorphic to ) g ), ¥k if k is algebraically
closed.

Note that the R-module M is free of rank 1 for each of the two actions above,
but the maps p: M — M are different. Thus g depends not just on the isomor-
phism class of M, but also on the embedding of M into S™ (corresponding to the
action of II on A). ]

As a result of the above proposition together with Theorem 2.3, we obtain:

COROLLARY 3.10: Let X and ¢ be as in Proposition 3.8. Then every finite
p-embedding problem for 71(X) is properly ¢-solvable.

Proof: The p-rank of m1(X) is infinite, by Corollary 3.7. Also cdp(m1(X)) <
1, by Corollary 3.3(c). So condition (i) of Theorem 2.3 holds; hence so does
condition (iv) of that result. By Proposition 3.8, ¢ is a strongly p-dominating
family. So every finite p-embedding problem for II is properly ¢-solvable, by the
conclusion of 2.3(iv). ]

Reinterpreting the above result in light of Proposition 3.1, we obtain the main
result of this section, concerning affine varieties X over an arbitrary field of
characteristic p > 0:

THEOREM 3.11: Let X be an irreducible affine variety of dimension > 0 and of
finite type over a field k of characteristic p. Let P be a p-subgroup of a finite
group T'; let G =T/P; and let Y — X be a connected G-Galois étale cover. Let
X' C X be a proper closed subset, let Y’ =Y x x X', and suppose that Z' =Y’
is a P-Galois étale cover such that the composition Z' — X' is I'-Galois. Then
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there is a connected P-Galois étale cover Z — Y such that the composition
7Z — X is I-Galois, and such that Z x x X' ~ Z' as I'-Galois covers.

Proof: Let f: T — G be the quotient map, and let a: m;(X) — G be a sur-
jection corresponding to the connected G-Galois étale cover Y — X. Also, let
Xi,...,X, be the connected components of X', and let ¢;, ¢ be as in the state-
ment of Proposition 3.8. By Corollary 3.10, the finite p-embedding problem
€ =(a: m(X) = G, f: T = G) is properly ¢-solvable. So the conclusion follows
from the implication (ii) = (i) of Proposition 3.1. |

4. p-Embedding problems for affine varieties: ramified case

This section, like the previous one, considers p-embedding problems with local
conditions over affine varieties of characteristic p. That is, we are given a G-Galois
cover Y — X and a group I with a normal p-subgroup P such that I'/P = G.
We then wish to find a I'-Galois cover Z — X dominating Y - X, with Z - Y
étale, and with Z — X having prescribed local behavior. In Section 3, the given
cover Y — X was required to be étale. Here it is permitted to be ramified, but
we add the requirement that its degree be prime to p. In a variant of Theorem
3.11, we show here, in Theorem 4.3, that such problems have solutions. While
Theorem 3.11 paralleled [Ral, Cor. 4.2.6], the main result in this section is closer
to paralleling the results of [Ha2, §4] and [Ra2].

The strategy here is adapted from that of [Ra2], viz. defining an appropriate
fundamental group 71 (Y/X). This m is then shown to satisfy the analogs of
Corollary 3.3(c), Corollary 3.7 and Proposition 3.8, and hence to satisfy the
hypotheses appearing in Theorem 2.3. As a consequence, that group-theoretic
result will apply here, and Theorem 4.3 will follow.

We begin by fixing terminology and reviewing concepts concerning covers that
are not necessarily étale. Let X be a reduced Noetherian scheme. A morphism
f:Y — X of finite type is generically étale if for every irreducible component
Y of Y, the closure of its image X° := f(Y°) is an irreducible component of X,
and Y° — X° is étale at the generic point. A cover of X is a finite morphism
of schemes f: Y — X which is generically étale. (If X is irreducible, this is
equivalent to the definition in [Ha2, §1].) Thus ramification in codimension > 1
is permitted here. Given a cover Y = X, we define the Galois group Gal(Y/X)
exactly as for étale covers (cf. the beginning of Section 3). Similarly, we define
the notions of a Galois cover and a G-Galois cover exactly as in the étale case.

Next, we define the version of ; that will be used in proving Theorem 4.3. If
X is a connected Noetherian scheme and Y — X is a Galois cover (not neces-



336 D. HARBATER Isr. J. Math.

sarily étale), then we will let my(Y/X) denote the Galois group of the maximal
connected pro-cover of X that is étale over Y. More precisely, if compatible geo-
metric base points are chosen on X and Y, at which Y — X is étale, then we
may consider the inverse system {Z,}, of pointed connected étale covers of Y
that are Galois over X. The group 7 (Y/X) is then defined to be 1(51 Gal(Z,/X).
Since the pro-universal cover of Y is Galois over X, it follows that there is an
exact sequence 1 = 7 (Y) - m(Y/X) - Gal(Y/X) — 1.

Note that above, if X; is a connected closed subset of X and Y7° is a connected
component of ¥; := Y xx Xj, then there is an induced map m(Y/X1) —
m1(Y/X) (determined up to inner automorphism, corresponding to the choice of
a base point). This map is compatible with the maps between the respective
terms of the above exact sequence and the analogous sequence for m (¥y/X1).

PROPOSITION 4.1: Let X = Spec R be an irreducible affine variety of dimension
> 0, and of finite type over a field k of characteristicp > 0. Let v: Y — X be a
finite Galois cover of degree prime to p, and let Il = m; (Y/X).

(a) Then cd,(I1) < 1.

(b) The group II has infinite p-rank.

(c) Let X' C X be a closed subset, strictly contained in X, and having connected
components X1, ...,X,. For each j, suppose that the pullback Y; =Y xx X;
—+ X is generically étale. Let Y be a connected component of Y;; let I:Ij =
m1(Y?/X;); let ¢;: 11; — II be induced by the inclusion X; — X; and let
¢ = {¢;};. Then ¢ is strongly p-dominating.

Proof: (a) The group m1(Y) is a closed subgroup of m(Y/X), with quotient
group G := Gal(Y/X). The index (m(Y/X): m1(Y)) is equal to |G| = deg(v),
which is prime to p. So by [Sel, 1.3.3, Prop. 14], these two profinite groups have
the same cd,. The assertion now follows from Corollary 3.3(c).

(c) Consider a continuous action of II on a non-trivial finite elementary abelian
p-group P, and the induced action of I:Ij on P. We wish to show that the induced
homomorphism ¢*: H'(1I, P) - [] ;H (1;, P) is surjective with infinite kernel.

Restricting the actions of II and of ij to the closed subgroups m(Y) and
m1(Y}), we may regard P as a module over m;(Y) and over m (Yj°).~ By the
Hochschild-Serre spectral sequence HP(G,H(m(Y),P)) = HPYI(IL, P) (cf.
[Sel, I 2.6(b)] or [Sh, p. 51]), there is an exact sequence

HI(G, P"fl(Y)) — Hl(f_[, P) — Hl(ﬂ'l(Y),P)G = H2(G, P1r1(Y))'

Here the first and last terms vanish, since G is of order prime to p and since P is a
p-group [Sel, I3.3 Cor. 2]. Thus H'(II, P) — H'(m;(Y), P)C is an isomorphism.
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By Proposition 3.2(a) we may identify H!(m1(Y), P) with H'(Y, Fy), where Fy

is the locally constant finite p-torsion étale sheaf on Y associated to P (viewed as a

71(Y )-module). We thus identify H'(II, P) with H(Y, Fy)® = H(m(Y), P)C.
Similarly, letting G; = Gal(Y?/X;) C G for each j, the exact sequence

1= m(Y7) = m(Y7/X;) 2> G~ 1

allows us to identify H'(Il;, P) with HI(YJ-°,.7-'yjo)GJ' = HY(m(Yy),P)%. For
each j, the closed set Y; = y~1(X;) is a disjoint union of connected compo-
nents Yj1,...,Yjm;, with Y;; = Y7. We may then identify the induced G-
module Ind§, H'(my(Yy), P) with [], H'(n1(Y;e), P), and thus HY(1;,P) =
HY(my (YF), PS5 with ([T, H(m1(Y5), P)) .

By Proposition 3.8, the map ¢} : H (m(Y),P) = [[;,H'(m(Y;e), P) is
surjective. This restricts to a map H'(m(Y),P)¢ — ([[;, H'(m (Yj,g),P))G,
which is surjective since the order of G is not divisible by p. (Namely, if z €
(T B (m(Y3.0), P))€ C T1; H (m1(Y;), P) then some w € H(my(Y), P)
maps to z; and then ]%[EgEG g(w) € HY(m(Y), P)¢ also maps to z.) This
surjectivity and the above identifications

H\({, P) = H'(ny(Y),P)®, H({1;,P)= HH m(¥;0), P)°,

show that the map ¢*: H(II, P) — I1; H\(I1;, P) is surjective, as desired. It
remains to show that d~)“ has infinite kernel, or equivalently that

H\(Y, F)¢ = ([ H Ve, F, g))G = H'(Y', Fy)¢
3t

does, where Y’ = JY; = v~ 1(X').

The exact sequence (2) in the proof of Proposition 3.8, but with Y instead of
X, takes the form

(2) My & My - H\(Y,Fy) = 0.

Here My is a finite locally free R;-module (where Y = Spec R;), and it corre-
sponds to the locally free sheaf My = Fy ®z/pz Ga on Y. As in the proof of
Proposition 3.8, My is a finite R;-submodule of S™, for some domain S that is
a finite étale extension of R, where n is the rank of P. Restricting the sequence
(2') to the G-invariant subspaces yields the sequence

(3) MG B MG - HY(Y,Fy)¢ =0
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of Z/pZ-vector spaces. The sequence (3) is again exact because G is of order
prime to p (by an averaging argument as above). Here M$ is a finite R-module
contained in My C S™. Similarly there is an exact sequence

(3) MG B MG - HYY',Fy)® -0

of finite modules over R’ = R/I, where I C R is the ideal of X'; here Mg, is a
finite R’-submodule of S, where §' = R' @ S.

The sequences (3) and (3') are compatible, and the map H(Y,Fy)¢ —
HY(Y',Fy/)® may be identified with the map MZ/p(MZ) - ME /p(ME.).
The kernel of this map contains IME/(IME N p(ME)). So to show that the
kernel is infinite, it suffices to show that IME /(IMZ N p(ME)) is. Now I # 0;
ME is an R-submodule of S*; and S is finite over R. So by Lemma 3.6, it suffices
to show that Mg is non-zero.

Since 4: Y — X is a cover, « restricts to a finite étale morphism over an affine
Zariski open dense subset U C X. Let V = 4~}(U) C Y. There are induced
homomorphisms 71(U) = 7, (V/U) — I and m(Y) — I, and a commutative

diagram
K
m (Y) fI

of profinite groups. The action of II on P thus induces actions of m; (U ) and
m1(V) on P which are compatible with the above actions of I and m;(Y) on P.
The corresponding locally constant finite p-torsion étale sheaves iy and Fy on
U and V are thus compatible with Fy; i.e. Fy|y = Fv = 4*(Fy). Consider the
locally free sheaves My = Fy ®z/,zGa on U and My = Fy ®z/,2Ga on V. As
in the proof of Proposition 3.8, these two sheaves correspond to finite locally free
modules My and My over the rings of functions of the affine varieties U and V.
Since P is non-zero, so are Fyy, My and My. But My and hence M‘? contains
My. So M§ is non-zero, and thus so is M$ = M§|y. So M§ is non-zero, and
hence so is M}C," , as desired.

(b) In part (c), take X’ to be empty, take P = Z/pZ, and take the trivial
action of IT on P. Then part (c) asserts that H (11, P) is infinite. But this is just
Hom(I1, Z/pZ). So I has infinite p-rank. |

7T1(V) — M

COROLLARY 4.2: Let II and ¢ be as in Proposition 4.1. Then every finite p-
embedding problem for 11 is properly ¢-solvable.

Proof: 'The pro-p-group II has infinite p-rank, by Proposition 4.1(b). Also,
cd,(M) < 1, by Proposition 4.1(a). So condition (i) of Theorem 2.3 holds for
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the group II, and hence so does 2.3(iv). By Proposition 4.1(c), ¢ is a strongly
p-dominating family. So every finite p-embedding problem for II is properly ¢-
solvable, by the conclusion of 2.3(iv). n

Using this result, we obtain the following analog of Theorem 3.11, in which the
G-Galois cover Y — X is permitted to have ramification, but in which G =T'/P
is required to have order prime to p (corresponding to P being a Sylow p-subgroup
of I'):

THEOREM 4.3: Let X be an irreducible affine variety of dimension > 0 and of
finite type over a field k of characteristic p. Let P be a p-subgroup of a finite
group I', and assume that G = T'/P is of order prime to p. LetY — X be a
connected G-Galois cover, let X' C X be a proper closed subset, and assume
that Y' = Y xx X' is generically étale over X'. Suppose that Z' — Y’ is a
P-Galois étale cover such that the composition Z' — X' is -Galois. Then there
is a connected P-Galois étale cover Z — Y such that the composition Z — X is
I'-Galois, and such that Z x x X' = Z' as I'-Galois covers.

Proof: We proceed as in the proof of Theorem 3.11. Let f: ' = G be the
quotient map, and let & m(Y/X) - G = Gal(Y/X) be the canonical map.
Also, let Xi,..., X, be the connected components of X’ and let q~5j,$ be as
in the statement of Proposition 4.1. By Corollary 4.2, the finite p-embedding
problem € = (&: m (Y/X) = G, f: ' = G) is properly ¢-solvable. Paralleling the
implication (ii) = (i) of Proposition 3.1, the I'-Galois covers Z; — X correspond
to weak solutions §; to the pullbacks &; (), and the desired cover Z — X
corresponds to the proper solution 3 to £ that induces the 8;’s up to P-conjugacy.
|

Remark 4.4: Theorems 3.11 and 4.3 each make an assumption on the given G-
Galois cover Y — X: either that it is étale or that it is prime-to-p. If one simply
dropped these assumptions (e.g. permitting ¥ — X to have wild ramification),
then the assertion that the cover Z — Y can be chosen to be étale would become
false. This can be seen, for example, by taking I' to be cyclic of order p?; P
and G = I'/P to be p-cyclic; X = A'; and Y — X a G-Galois cover that is
totally ramified over the origin. For then, any I'-Galois cover Z — X' dominating
Y — X must also be totally ramified over the origin (since its inertia group
surjects onto G), and then Z — Y is not étale. [ |

While the above remark shows that the separate hypotheses on Y — X in
Theorems 3.11 and 4.3 cannot simply be dropped, in the case that X is a curve
there is a natural weaker hypothesis which would lead to a more general assertion
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containing these two theorems as special cases: That if Y — X is a connected G-
Galois cover of a characteristic p affine variety X having only tame ramification,
and if G = T'/P for some p-group P, then there is a connected P-Galois étale
cover Z — Y such that Z — X is I~Galois and has given behavior over a given
proper closed subset X’ € X. The strategy employed in the proofs of Theorems
3.11 and 4.3 cannot be used directly to prove such an assertion, since one first
would need to know that an appropriate version of m; has cd, < 1 (but the
proof of Proposition 4.1(a) above does not carry over). In the following section,
however, we turn this around — proving such an assertion for affine curves X
(Theorem 5.14), and then deducing that the corresponding version of 7; has
cd, < 1 (Corollary 5.16). The assertion is shown by first proving an analogous
result in an “adelic” situation (Theorem 5.6).

5. p-Embedding problems for affine curves

The previous two sections showed that p-embedding problems can be solved over
characteristic p affine varieties, with prescribed behavior over a given proper
closed subset, under appropriate hypotheses. This section will show that in
the case of normal affine curves X, even more is true: that such embedding
problems can be solved with prescribed behavior over a given finite set of local
fields (Theorem 5.6). This gives greater control on the local behavior, and will
also lead to a result on tame covers (Theorem 5.14, referred to at the end of the
previous section) which subsumes and strengthens the main results of Sections 3
and 4 in the case of curves.

More precisely, suppose that X is a normal curve over an arbitrary field %
of characteristic p > 0. For each closed point £ € X, the complete local ring
o x,¢ is a complete discrete valuation ring. By the local field at £ we will mean
the fraction field Kx ¢ := frac éX,E (or for short, K¢). The fundamental group
of Spec(K¢) may be identified with the absolute Galois group Gg, of K, i.e.
the Galois group Gal(KZ/K¢) of the separable closure of K¢. If X is connected
and U C X is a non-empty open subset, the inclusion Spec(K¢) — U induces
a homomorphism ¢¢: Gx, — m1(U) between the corresponding fundamental
groups.

We begin with the following lemmas. Here, as before, for any characteristic p
ring A we consider the Fy-linear map p: A — A given by p(a) = a® — a.

LEMMA 5.1: Let R be a Noetherian ring of characteristic p that is complete with
respect to.an ideal I. Let A D R be an R-algebra, let M be a finite R-submodule
of A, and suppose that p(M) C M. Then p(IM) = IM and hence IM C p(M).
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Proof: Every element of IM is a sum of finitely many elements of the form
im (with ¢ € I and m € M), so we may restrict attention to elements of this
form. Also, since p(M) C M, and since M is an R-module (and in particular
a Z/pZ-module), it follows that F(M) C M, where F: A — A is the Frobenius
map a — aP.

If i € I and m € M, then p(im) = ©PmP — im = i(iP"ImP — m) € IM since
mP € F(M) C M. Thus p(IM) C IM. It remains to show that IM C p(IM).

Again, say ¢ € T and m € M. Then m? € Fi(M) C M for each non-
negative integer j. Since i € I, we then have #-1mP e IP~1M. Now M
is finite over R, and R is I-adically complete; so M is equal to its own I-adic
completion [Bo, III, 3.4, Theorem 3(ii)], i.e. M is I-adically complete. So the

~1mP® _ ... defines a well defined element

series —m — iP~1mP — iP"~1mp” — j#°
m’ € M. Thus im’ € IM. One immediately computes that p(im’) = im. This

shows that IM C p(IM). |

LEMMA 5.2: Let R be a Dedekind domain and let U = Spec Ry be a dense open
subset of X = Spec R. Let A be a normal ring containing Ry, and let My be a
finite locally free Ry-submodule of A of rank n that is closed under p: A — A.
Then there is a dense open subset X¢ = Spec Ry C X such that UU Xy = X,
together with a locally free R-submodule M of My having rank n, such that
(i) the canonical map M ® g Ry — My is an isomorphism;
(i) Mo := M ®g Ro C A®R Ry is a free Ro-module of rank n with a basis
B Cc M; and
(iii) My is closed under p, as is Mg := M ®r Ox¢ C A®g Ox¢ for each
Ee X -U.

Proof: Since My is a locally free Ry-module of rank n, there is a dense open
subset Uy = Spec Ry, of U such that My, := My ®g, Ry, is free of rank n.
Choose a basis B = {b1,...,b,} for My, over Ry,. After multiplying the b;’s by
appropriate elements of R, and shrinking Uy if necessary, we may assume that the
basis B consists of elements of My C My, C A. In particular, p(b;) € p(My) C
My, and so b7 € My C My, for all i. Write b = 3, e; ;b; with e;; € Ry,
After again multiplying the b;’s by appropriate elements of R and shrinking Uy,
we may assume that each e; ; € R.

Let ¥ = U — Uy. Then Xy := X — X is an affine dense open subset of
the affine curve X, say Xo = SpecRy. Thus Ry C Ry,. Let My be the Ryp-
submodule of My, generated by B. Since the b;’s are Ry,-linearly independent,
they are also Ry-linearly independent. So M is a free Ry-module of rank n,
and we may identify My ®r, Ry, = My, = My ®r, Ry, Thus we obtain
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a locally free coherent sheaf M on the affine curve X, corresponding (via [Ht,
II, Prop. 5.4]) to a locally free R-module M of rank n that induces My, My,
and My, (compatibly with the above identifications) over Ry, Ry, and Ry,
respectively. Since B generates the Ro-module M, it also generates the Rg-
module M; = M ®g R; = My ®g, Rg for each £ € X — U, where R = Ox .
But b7 = >, €;,;b; € Mo C Mg for each £ € X —U. So My and the M’s are
each closed under the Frobenius map F and hence under p. And since each
b; € My, My compatibly, we have B C M. 1

The next result is analogous to Proposition 3.8, but it considers local behavior
over local fields (rather than over closed subsets), and it requires X to be a
curve. As in Proposition 3.8, the result does not generalize to local schemes like
Speck[[t]], which are not of finite type over the base field k.

PROPOSITION 5.3: Let k be a field of characteristic p, and let X be a connected
normal affine k-scheme of dimension 1, of finite type over k. Let U = X ~
{&1,...,&} be a dense open subset of X (where r > 0). Let Il = m{U), let
I1; be the absolute Galois group of K¢;, let ¢;: Il; — II be the map induced by
SpecK¢, = U, and let ¢ = {¢;};. Then ¢ is strongly p-dominating.

Proof: Let P be a non-trivial finite elementary abelian p-group, say of rank
n, together with a continuous action of II. We wish to show that the induced
homomorphism ¢*: H(II, P) — [] ;H 1(I;, P) is surjective with infinite kernel.

Let R be the ring of functions on X, let Ry be the ring of functions on the affine
curve U, and let K be the common fraction field of these rings. Let X be the
set, of places of K/k, and identify the closed points of X with the corresponding
places. Since X is an affine curve, there is a place g € X that is not identified
with any point of X. For each place p € X, let vy: K — Z be the corresponding
discrete valuation. For p = £ € X, v, extends to a discrete valuation vg: K¢ — Z.
Let S = {£1,...,&}and ' = SU{q} C X.

As in the proof of 3.8, the action of II on P induces an exact sequence

My 5 My — H'(IL,P) -0

of Z/pZ-vector spaces, where My is a rank n locally free Ry-submodule of S7,
and Sy is finite étale over Ry. By the above exact sequence, we may iden-
tify H'(II, P) with My/p(My). Similarly, we may identify H(Il;, P) with
My ;j/o(My,;), where My; = My ®g, K¢;. We may also thus identify
[T, H'(1L;, P) with My /p(My;), where My = [[_, My,; (which is a mod-
ule over K’ := [ K¢, contained in S}, where Sy, = Sy ®ry K'). It thus suffices
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to show that the natural map fy: My /p(My) — M{;/p(Mj;) is surjective with
infinite kernel.

Applying Lemma 5.2, we obtain a dense open subset Xy = Spec Ry of X such
that U U Xy = X, and a rank n locally free R-submodule M C My satisfying
(i)-(iii) of that lemma. Thus Ry C K',K¢,, and B = {b1,...,b,} C M is a
basis for M ®g Ry and hence for M{; = My ®gr, K' = M ®r K’ and My,;.
Let R; = @X,ej and M; = M ®g R;. Since M is locally free and hence flat,
the inclusions R — Ry < K’ and R — R’ := [[; R; — K' induce inclusions
M < My < Mj; and M — M' =[], M; = M ®g R’ — Mj,. Similarly, the

exact sequence 0 —» R A R x Ry 3, K’ induces an exact sequence
A 7] é, 1
(1) 0> M= M x My~ M,

where A is the diagonal map and é(a’,ay) = d' — ay.

To show the surjectivity of fy, let € M{,/p(M{;), and take &’ = (x1,...,z})
€ M{;, = [[;=; Mu; lying over . Thus z} = 3=, ri ;bi, where ry; € K¢;. For
each ¢ = 1,...,n, the Strong Approximation Theorem {FJ, Prop. 2.11} implies
that there is an element r; € K such that ve,(ri —r;;) = 1for 1 < j <r
and such that vp(r;) > 0 for every place p € X — 8. Thus r; € Ry and
so the element z := ), 7;b; lies in My. Let I; be the maximal ideal of R;.
Then r; — r;; € I; C R; for each i,j, since vg,(ri —ri5) = 1. Soz -z =
3o (ri—ri)bi € I;M; C p(M;) C p(My,;) for each j, by Lemma 5.1 (regarding
M;, My as subsets of My, ;). Thus z — 2’ € p(M{;) (regarding My C My). So
Z' is the image of Z under My /p(My) — M{;/p(M{;), where Z is the class of =
modulo p(My). This proves the desired surjectivity.

Finally, we show that the kernel of fy: My /p(My) — M{;/p(My;) is infinite.
Let f, fu,g9,¢' be the maps induced by inclusions, in the following commutative
diagram:

M/p(M) —L— M /p(0")

| /|
My /p(My) -~ My (M),
1t suffices to show that ker f contains an infinite dimensional Z/pZ-subspace N
and that the restriction g|y has finite kernel — for then, g(IV) is an infinite
subset of ker(fy). Now IM maps into I; M; under M — M;, where I C R is the
ideal corresponding to the closed subset X — U. But I;M; C p(M;) by Lemma,
5.1. This is true for all j, so N := IM/(IM N p(M)) is contained in ker f. This
set N is infinite, by Lemma 3.6. It remains to show that ker(g|y) is finite.
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Viewing M', My C M{;, and using that p(M') C M’ (by Lemma 5.2(iii))
and p(My) C My, we have that p(M’) N p(My) C M’ N My = M, where the
intersection takes place in S;7*. By Lemma 5.1,

ker(g|n) = (IM N p(My))/(IM N p(M))

is contained in the Z/pZ-vector space V := (p(M')Np(My))/p(M) C M/p(M).
So it suffices to show that V is finite. Consider the Z/pZ-vector space

W = {(m/,my) € M' x My| p(m’) = p(my) € S}

There is a surjective Z/pZ-vector space homomorphism p: W — V, given by
pm/,my) = p(m’) = p(my) modulo p(M). Now if (m/,my) € W then m' €
M' c 8™ C Sif and my € Mjy C Si C Si7; s0

m' —my € Q = ker(p: Si — Si7).

That is, §(W) C @, where §: M’ x My — My is as in exact sequence (1) above.
Now S}, = Sy ®r, K’ is finite étale over K', and thus is a direct sum of finitely
many fields of characteristic p. Hence so is S;?. Since Z/pZ is the kernel of p
on any such field, it follows that Q is a finite dimensional Z/pZ-vector space.
Moreover by (1), & induces an injection &: (M’ x My)/M — My, where M
is included as the diagonal. Thus if we let W = W/M (again, with M as the
diagonal), then the restriction of § to W is an injection W — Q. Thus W is
finite. But g: W — V factors through W — W; and the corresponding map
p: W — V is surjective since j is. It follows that V' = p(W) is also finite, as
desired. 1

Remark 5.4: (a) A weak version of the above result holds even if X is projective,
provided that the base field k is separably closed. Namely, in this situation, ¢
is p-dominating (rather than strongly p-dominating). Arguing as in [Ka, 2.2.1],
this can be shown using the Cartan-Leray spectral sequence H?(X, R%,F) =
HPY(U, F) [Mi, III Theorem 1.18(a)], where «: U — X is the inclusion and
F is the p-torsion sheaf on U associated to a II-module P as above. Namely,
identifying H* (K¢, F) with H'(KC},,F) (where IC?J_ is the fraction field of the
henselization O?,- of Ox.,), the associated exact sequence of low degree terms
gives

0 — HY(X,uF) » H'(U,F) » [[ H (K, F) = H* (X, 0.F)
i
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(since R!1,F is supported on X — U). But H%(X,:,F) = 0 by Corollary 3.3(b).
So the map H'(U,F) — [[; H'(K¢;,F), or equivalently ¢*: H'(IL,P) —
[1; H'(11;, P), is surjective.

(b) The argument in (a) above also works in the affine case, using Corol-
lary 3.3(c) instead of Corollary 3.3(b), even over a non-separably closed field,
provided that one uses the strict henselization rather than the henselization.
This provides a weaker conclusion than 5.3, however. ]

Using the above proposition, we obtain the following result, which asserts the
existence of proper solutions to p-embedding problems for curves with prescribed
behavior over finitely many local fields (rather than over closed subsets, as in
Sections 3 and 4).

COROLLARY 5.5: Let X, II, and ¢ be as in Proposition 5.3. Then every finite
p-embedding problem for 11 is properly ¢-solvable.

Proof: The proof is identical to that of Corollary 3.10, except that Proposition
5.3 is cited rather than Proposition 3.8. |

In terms of covers, the above yields:

THEOREM 5.6: Let X be a connected normal affine curve of finite type over a
field of characteristic p, let r > 0, and let &,,...,&, be closed points of X. Let P
be a normal p-subgroup of a finite group I'; let G =T'/P; and let Y — X be a
connected normal G-Galois cover which is étale away from &, ...,&.. For each j
let A; be a I'-Galois K¢, -algebra, together with an isomorphism (Spec A;)/P =
Y xx SpecK¢, of G-Galois covers. Then there is a connected normal I'-Galois
cover Z — X which is étale away from &,...,&., together with compatible
isomorphisms Z/P =Y as G-Galois covers and Z x x SpecK¢, = Spec A; as
I'-Galois covers.

Proof: Let U = X — {&,...,&-} and let V — U be the restriction of Y — X
over U. Following the proof of Theorem 3.11, let f: I' = G be the quotient
map, let oz 71 (U) = G be a surjection corresponding to the connected G-Galois
étale cover V — U, and let ¢ be as in the statement of Proposition 5.3. By
Corollary 5.5, the finite p-embedding problem £ = (a: m;(U) = G, f: T = G) is
properly ¢-solvable. So by the implication (ii) = (i) of Proposition 3.1, there is
a connected I'-Galois étale cover W — U that dominates V — U and pulls back
to each Z; = X; up to isomorphism. Let Z be the normalization of X in W.
Then Z — X is as desired. |
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Remark 5.7: (a) In the proof of Corollary 5.5, if one replaces Proposition 5.3
by Remark 5.4(a), then one obtains a proof that if X is a projective curve over a
separably closed base field &, then every embedding problem for II is weakly ¢-
solvable. This in turn implies that a weak form of Theorem 5.6 holds in this case
(viz. that the asserted I'-Galois cover Z — X exists but need not be connected).
This result is essentially [Ka, Theorem 2.1.5]. And in fact, the cover Z cannot
in general be chosen to be connected — e.g. if the local extensions A; are taken
to be trivial, and X is the projective line, then Z just consists of disjoint copies
of X.

(b) The above remark (a) no longer holds if the base field k& is allowed to be
arbitrary (rather than separably closed). For example, let k C k' be a separable
field extension of degree p; let X be the projective k-line; let & be the point
z = o0 on X and let & be the point £ = 0 on X. Also, let I' = P be cyclic of
order p; let G be the trivial group; and let Y — X be the trivial cover. Let 4; be
the trivial I'-Galois K¢, -algebra (K¢, )P = Indf K¢, , and let A, be the non-trivial
I'-Galois algebra k'((z)) over K¢, = k((z)). Then in the context of Theorem 5.6,
the desired I'-Galois cover Z — X does not exist (even if it is permitted to be
disconnected), since it would have to be unramified everywhere, hence be purely
arithmetic — contradicting the fact that the residue fields &',k over £ = 0,00
would be distinct. ]

Using the above theorem, together with the results below, we will obtain (in
Theorem 5.14) a strengthening of the results of Sections 3 and 4 in the case that
the base space is a curve.

LEMMA 5.8: Let I' be a finite group with an abelian normal subgroup A, and
quotient map f: T—»G := T'/A. Suppose that G = Cx E, where A and C have
relatively prime orders, and suppose also that the exact sequence 1 — A —
f~YE) = E — 1 splits. Then the exact sequence 1 -+ A —T' — G — 1 splits.

Proof: This is equivalent to a theorem of Gaschiitz [Hu, I §12, Hauptsatz
17.4(a)]: If A is an abelian normal subgroup of I', A ¢ B C T, and the or-
der of A is relatively prime to the index (T' : B), and if A has a complement in
B, then A has a complement in I'. Namely, in the statement of the lemma, we
can take B = f~1(E), whose index in I is equal to the order of C. ]

If f:T = G and f": I — G are group homomorphisms, then we may form the
fibre product of groups, namely I'x g := {(g,¢’) € TxI"| f(g) = f'(¢")}. If f is
surjective with kernel N, then the exact sequence 1 - N — I' = G — 1 induces
an exact sequence 1 » N 2 I'xgIV -5 IV 5 1. Herethe map ' xg I = I is
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the second projection, and the map N — I' xg I" is given by n — (n,1).

LeMMA 5.9: Let R be a complete discrete valuation ring of characteristic p, with
fraction field K and residue field k. Let G be a finite group, let L be a G-Galois
field extension of K, and let S be the integral closure of R in L. Suppose that the
extension R C S is tamely ramified. Let f: T'~»G be a surjective homomorphism
whose kernel is a finite abelian p-group P.

Then there is a finite Galois fleld extension K C K' whose corresponding
extension of complete d.v.r.’s is étale, such that the induced exact sequence

(2) 1> P—>TIxgGal(K'L/K) — Gal(K'L/K) —» 1

is split (where the compositum K'L is taken in a fixed separable closure of K).

Proof: Let R C R; be the maximal unramified subextension of R € S, and let
K be the fraction field of R;. Thus the extension R; C S is totally ramified,
and its Galois group C is cyclic of order n prime to p. Let E; be the Galois group
of R; over R. Thus we have an exact sequence

1-C—>G—>E; =1

Also, the ring R is isomorphic to k[[z]] by [Ma, Cor. 2 to Theorem 60], because
R is a complete regular local ring of dimension 1 containing a field (viz. Fp).
Thus R, is isomorphic as an R-algebra to k;[[z]], where k; is an E;-Galois field
extension of k.

Let Ry = Ri[¢n] = ki1[¢s][[z]], where {, is a primitive nth root of unity in
the separable closure of K, and where n is the order of C' (which is not divisible
by p). By Kummer theory, the compositum RS = S[(,] is given as an Ro-
algebra by R[z]/(2™ — uz), for some unit u € Ry (where this is the full ring of
integers in its fraction field because z is a uniformizer). Let Rz = Ry[{/u].
Then R3S =~ Rslyl/(y™ — z). Also, since p does not divide n, Rj is étale
over R;, and hence over R. Moreover R3S is Galois over S, and the natural
surjection Gal(R3S/R) — Gal(R3/R) maps Gal(R3S/R[y]) isomorphically onto
Gal(R3/R). (Here we regard y as an element of R3.S.) So the short exact sequence

1 - Gal(R3S/Rs) — Gal(R3S/R) — Gal(Rs/R) ~ 1

is split. There is a natural isomorphism Gal(R3S/R3) = Gal(S/R;) = C,
and so we may identify Gal(R3S/R) with a semidirect product Cx E3, where
E3 = Gal(R3/R). The natural surjection Gal(R3S/R) — Gal(S/R) may thus be
identified with a map C'x F3—»G.



348 D. HARBATER Isr. J. Math.

The surjections f: I' — G (with kernel P) and C'x E3—»G yield an exact
sequence
1+ P =T xg(CxE3)5CxE; - 1.

This restricts to an exact sequence
15 P g Y E)SE; -1,

regarding E3 as a subgroup of C'x E3. By Corollary 3.3(c), cdp(7m1(SpecR)) < 1,
and so the surjection m; (Spec R)—» E3 corresponding to the F3-Galois étale cover
Spec R3 — Spec R must lift to a homomorphism m(Spec R) — g~1(E3). Since
g 1(E3) is finite, this homomorphism factors through a finite quotient E’ of
m1(Spec R). Thus we have a surjection a: E'-—»Ej3 which lifts to a map 3: E' —
g~ '(E3), and the quotient map 71(Spec R)—E’ corresponds to an E’-Galois
étale extension R’ of R which contains R3. The surjections g: g~!(E3)—»E3 and
a: E'—» Ej5 yield an exact sequence

3 1P g YE)xp, B - E -1
3

which has a splitting (3,id): E' — g~ 1(E3) xg, E'.

Now R’ is étale over Ry whereas S is totally ramified over R;. So R'S is a
totally ramified C-Galois extension of R'. As in the case of R3, the Galois group
Gal(R'S/R) may be identified with a semidirect product Cx E’, and the natural
surjection Gal(R'S/R) — Gal(S/R) may be identified with a map Cx E'—»G.
The surjections f: I' = G and Cx E'—»G then yield an exact sequence

@) 15 P57 xg (CHE)SCHE - 1.

Identifying ¢’ "} (E’) with g~1(E3) x g, E’, the sequence (4) restricts to the split
exact sequence (3). So by Lemma 5.8 {with A = P), it follows that the sequence
(4) splits. Writing K’ = frac(R’) and L = frac(S), we have that Gal(K'L/K) =
Gal(R'S/R) = CXx E'. So the desired conclusion follows. |

Recall (from the beginning of Section 4) that if Y — X is a Galois cover, then
we may consider an associated fundamental group m;(Y/X).

PRrROPOSITION 5.10: Let R C S be a tamely ramified Galois extension of complete
discrete valuation rings of characteristic p. Let X = SpecR and Y = Spec S.
Then cdp(m(Y/X)) < 1.

Proof: Let I = m(Y/X). The condition cdy(II) < 1 is equivalent to the
condition that every finite p-embedding problem for 71 (Y/X) has a weak solution,
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by [Sel, I, 3.4, Proposition 16]. By Lemma 2.1, it suffices to restrict attention to
finite embedding problems for II whose kernels are elementary abelian p-groups.

Solet £ = (Il - G, f:T = G) be such an embedding problem, and let
P = ker f. Then the surjection o corresponds to a pointed connected G-Galois
cover Z — X which factors as Z =+ Zy — X, where Z — Z; is étale and where
Zo — X is a Galois subcover of the tamely ramified cover Y — X. Thus Z —» X
is tamely ramified.

Let K, L be the fraction fields of R, S respectively (regarded as subfields of a
fixed separable closure of K). By Lemma 5.9 there is a finite Galois field extension
K C K’ such that R’ is étale over R, where R’ is the integral closure of R in K’;
and where the induced exact sequence (2) of 5.9 is split. Let X’ = Spec R’. We
may give X’ the structure of a pointed Galois étale cover of X; then X' xx Z
is a pointed étale cover of Z. Let Z’ be the component of X’ X x Z containing
the base point. Then Z’ is étale over Z and Galois over X, with Galois group
G’ .= Gal(K’'L/K). Thus there is a surjection ¢': II-» Gal(K’L/K) that induces
the given map a: II—+G = Gal(L/K). We then obtain a commutative diagram

II

!
a

f,

1—+P—+T'x¢gG —G ——1

{

1——P r—f .¢— 1

with exact rows, where A: G'—»G is the natural quotient map; where
N:T xg G'—»T is the first projection and where Ao/ = a: I—»G.

Now the upper row is split, so there is a map 8': I — I’ xg G’ such that
f'8/ =d. Thus 8:= XNp': I - T satisfies f8 = a: Il = G; i.e. 8 is a weak
solution to the given embedding problem £. 1

If X is a regular connected pointed curve, and if ¥ C X is a proper closed
subset not containing the base point, then define the tame fundamental group
mt(X,X) to be the inverse limit of the Galois groups of pointed Galois covers
Y — X with Y regular, tamely ramified over X, and étale elsewhere. Thus if
X is projective, then this is the same as n%(U), in the notation of [Gr], where
U=X-%.

COROLLARY 5.11: Let R be a complete discrete valuation ring of characteristic
p. Let X = Spec R and let ¢ be the closed point of X. Then cd,(n¥(X, {€})) < 1.
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Proof: We wish to show that every finite p-embedding problem
£ =(a"m(X,{}) > G, f:T=G)

for 7} (X, {£}) has a weak solution. For such an embedding problem, the surjec-
tion a* corresponds to a regular connected G-Galois cover Y — X that is tamely
ramified over . There is a canonical map a: m1(Y/X) — G, corresponding to the
cover Y. Since Y — X is tamely ramified over &, the group m;(Y/X) is a quotient
of 7t (X, {€}), say via a map g¢: nt(X, {¢})—»n(Y/X). Moreover the homomor-
phism o' factors as o* = ag. By Proposition 5.10, the p-embedding problem
€ = (am(Y/X) = G, f: T — G) has a weak solution 3: 7;(Y/X) - . Thus
Bq: 7§ (X,{¢}) — T is a weak solution to £*. |

As a result, we obtain the following variant of Theorem 5.6:

PROPOSITION 5.12: Let X be a connected normal affine curve of finite type
over a field k of characteristic p, let r,s > 0, and let &,...,&.,(1,...,( be
distinct closed points of X. Let P be a normal p-subgroup of a finite group T}
let G =T'/P; and let Y — X be a connected normal G-Galois cover which is
tamely ramified over (1, . ..,(, and étale away from &, ...,&,,(1,...,(s. For each
Jj let A; be a I'-Galois K¢, -algebra, together with an isomorphism (Spec A;)/P =
Y xx SpecK¢; of G-Galois covers.

Then there is a connected normal T'-Galois cover Z — X which is tamely
ramified over (1,...,(s and étale away from &,...,&., (1, .., (s, together with
compatible isomorphisms Z/P =Y as G-Galois covers and Z x x Spec Ke, =
Spec A; as I'-Galois covers.

Proof: For each i =1,...,s, the pullback Y; := Y x x Spec @X,Ce — Spec @X,C,-
is a tamely ramified G-Galois cover of regular curves. By Corollary 5.11, there
is a normal tamely ramified I-Galois cover Z; — SpecOx,, that dominates
the G = I'/P-Galois cover Y; — Spec@xyc‘.. Let Z; = SpecB; — SpecKy,
be the generic fibre of Z; — Spec @X,Ca' Thus B; is a I-Galois K¢,-algebra,
and Z;/P ~ Y xx SpecK¢, as G-Galois algebras. By Theorem 5.6, applied
to the set ¥ := {&,...,&,¢i,---,(} C X, we obtain a connected normal I'-
Galois cover Z — X which is étale away from X, together with compatible
isomorphisms Z/P =Y as G-Galois covers, and Z x x SpecK¢; = Spec A; (for
i=1,...,7)and Z x x SpecK¢, = Spec B; (for i =1,...,s) as I-Galois covers.
Since Z; — SpecOx. ¢, is tamely ramified, Z — X is as desired. ]

Remark 5.13: If k is separably closed, then the assertion of Proposition 5.12
remains true even if X is projective, provided that Z is no longer required to
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be connected. This follows by replacing Theorem 5.6 by Remark 5.7(a), in the
above proof. This variant of 5.12 can be regarded as a generalization of [Ka,
Theorem 2.1.6] to the case of more than two branch points (but stated just for
one group at a time, rather than for m;). |

Combining the above proposition with Theorem 3.11, we obtain the following
theorem, referred to at the end of Section 4. It implies and subsumes Theorems
3.11 and 4.3 in the case of normal curves X. Namely, those results respectively
assume that the given G-Galois cover Y — X is either étale or is of degree prime-
to-p. The result below for curves, though, merely assumes that ¥ — X is tamely
ramified. Note that the data over the points £; is non-trivial only in the case
that the base field k is not algebraically closed, which is thus the case of main
interest.

THEOREM 5.14: Let X be a connected normal affine curve of finite type over
a field k of characteristic p, let r,s > 0, and let &,...,&,,(1,...,(s be distinct
closed points of X. Let P be a p-subgroup of a finite group I'; let G = T'/P; and
let Y = X be a connected normal G-Galois cover which is tamely ramified over
(1,...,(s and étale elsewhere.

Let Z' —» X' .= {&,...,& } be aT'-Galois étale cover together with an isomor-
phism Z'|P =Y xx X' of G-Galois covers. Then there is a connected normal
P-Galois étale cover Z — Y such that the composition Z —» X is a tamely ram-
ified I'-Galois cover Z — X which is étale away from (3,...,(s, and such that
7 xx X' = Z' as I'~Galois covers.

Proof: LetU =X —{(1,...,{:} and let V — U be the pullback of ¥ — X over
U. Applying Theorem 3.11 to V — U and to the cover 2’ = X' = {&,...,& ),
we obtain a connected normal I'-Galois étale cover W — U that dominates
V — U and whose restriction to X’ is Z° — X'. Thus for each j the fibre over
X;:={&}is Zj := Z' xx X; = X;. The pullback of W — U over the complete
local ring at £; is a I-Galois étale cover of the form Spec /ij — Spec o X ,¢;, Where
A; is a finite product of complete discrete valuation rings. Here the closed fibre of
Spec Aj — Spec o X,¢, is isomorphic to Z; — X; as a I-Galois cover, and there is
a compatible isomorphism of G-Galois covers of Spec Ox ¢, between (Spec 4;)/P
and the pullback of Y.

The generic fibre of Spec /ij — Spec o x ¢, is of the form Spec A; — Spec Ky,
and there is an isomorphism (Spec A;)/P =Y x x SpecK¢, of G-Galois covers.
By Proposition 5.12, we obtain a connected normal I-Galois cover Z —+ X which
is tamely ramified over (,...,{, and étale away from &;,...,&, (1, .., s, and
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which compatibly induces the G-Galois cover Y — X modulo P and induces the
I'-Galois covers Spec A; — Spec K¢, via pullback. The pullback of Z — X over
Spec O x.,¢; thus has the same generic fibre Spec A; — Spec K¢, as the étale cover
Spec A; — Spec @X,ej- Since Z is normal and is finite over X, it follows that
these two G-Galois covers of Spec o x,¢; agree. Hence the closed fibre of Z over
X; = {¢;} agrees with Z; — X; as a I'-Galois cover (and so Z x x X’ agrees with
Z'), and Z — X is étale over X’. Thus Z — X is tamely ramified, and hence so
is the intermediate P-Galois cover Z — Y. Hence Z — Y is étale, since P is a
p-group. So Z is as desired. 1

Reinterpreting the above results in terms of embedding problems, we obtain:

COROLLARY 5.15: Let X be a connected normal affine curve of finite type over
a field k of characteristic p, let ¥ be a proper closed subset of X, let r > 0, and
let &, ... ,& bedistinct closed points of X —X. Let Gy e,) be the absolute Galois
group of the residue field k(§;).

(a) Let ¢* = {¢%};, where ¢%: Gy(,;) — 71(X,Z) corresponds to the inclusion
{¢;} = X — . Then every finite p-embedding problem for 7}(X,X) is properly
¢*-solvable.

(b) Let Y — X be a connected normal Galois cover that is tamely ramified
over ¥ and étale elsewhere. Let ¢y = {¢y,;};, where ¢y,;: Gr(e;) — m(Y/X)
corresponds to the inclusion {{;} < X — X. Then every finite p-embedding
problem for m1(Y/X) is properly ¢y-solvable.

Proof: (a) Let £ = (a: 7¥(X,Z) = G,f: T — G) be a finite p-embedding
problem for 7 (X, ¥). Then the surjection « yields a connected normal G-Galois
cover of X which is tamely ramified over ¥ and étale elsewhere. A weak solution
to the induced embedding problem ¢**(£) yields I'-Galois étale covers Z; —
X; := {¢;} that dominate the pullbacks Y; — X; of Y — X. By Theorem 5.14
there is a connected normal I'-Galois cover Z — X that is tamely ramified over &
and étale elsewhere; that dominates Y — X; and that restricts to each Z; — Xj.
Just as in the remarks prior to Proposition 3.1, such a cover corresponds to a
proper solution to £ whose compositions with the component maps ¢>;~: Gre;) =
7}(X,X) are conjugate to proper solutions of the pullbacks ¢%*(£). So £ is
properly ¢t-solvable.

(b) Let £ = (a: m(Y/X) = G, f: T = G) be a finite p-embedding problem for
m(Y/X). Consider a weak solution to ¢3 (£), corresponding to I-Galois étale
covers Z; — X; := {{;} that dominate the pullbacks Y; = X; of Y — X.
As in the proof of Proposition 5.10, the surjection « corresponds to a pointed
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connected normal G-Galois cover Z — X which factors as Z — Zy — X, where
Z — Zp is étale and where Z; — X is a Galois subcover of Y — X. Thus
Z — X is tamely ramified over ¥ and étale elsewhere; and so it corresponds to
a surjection at: 7t(X,¥) — G (factoring through «). By (a), there is a proper
solution to the p-embedding problem &' := (a*: 7} (X,X) = G, f: I’ = G) which
up to conjugacy induces the given weak solution to ¢3,(£). Such a solution
corresponds to a connected normal I'-Galois cover W — X which dominates
the G-Galois cover Z — X, such that W — Z is étale, and which restricts to
each Z; — X;. Thus the IGalois cover W — X factors as W — Zp — X,
where W — Zj is étale (since W — Z is at most tamely ramified, and is Galois
of p-power degree). Hence W corresponds to a proper solution to the given p-
embedding problem &, inducing the given weak solution to ¢, (£) up to conjugacy.
So & is properly ¢y-solvable. ]

The following corollary provides a variant of Corollary 3.3(c) in the tame case,
and a generalization of Proposition 4.1(a) to the case that the given cover Y — X
need only be tame (rather than prime-to-p). The base space X, however, is
assumed here to be a curve.

COROLLARY 5.16: Let X be a connected normal affine curve of finite type over
a field k of characteristic p, and let ¥ be a proper closed subset of X.

(a) Then cdp(nt(X, %)) < 1.

(b) Let Y — X be a connected normal Galois cover that is tamely ramified over
¥ and étale elsewhere. Then cdp(m(Y/X)) < 1.

Proof: Taking r = 0 in Corollary 5.15 (so that ¢! [resp. ¢y] is the empty
collection), we obtain that every finite p-embedding problem for 7t(X, ) [resp.
for m;(Y/X)] is properly solvable, and hence weakly solvable. So the assertion
that cd, < 1 follows from [Sel, I, 3.4, Prop. 16]. |

Remark 5.17: (a) In Sections 3 and 4, it was first proven that m; (X) or m (Y/X)
(in the prime-to-p case) had cd, < 1, and then that was used in showing that
every finite p-embedding problem was properly ¢-solvable (in Theorems 3.11 and
4.3, and Corollaries 3.10 and 4.2). But in the present section, in the case of curves,
it was not known a priori that the relevant cd, < 1. Instead, the prior strategy
was reversed above: first proving that every finite p-embedding problem for 7} (X)
and m1(Y/X) (in the tamely ramified case) is properly ¢-solvable (Theorem 5.14
and Corollary 5.15), and then deducing (in Corollary 5.16) that cd, < 1.

(b) It would be interesting to know if Theorem 5.14, and Corollaries 5.15 and
5.16, have higher dimensional analogs (e.g. having hypotheses of tame ramifica-
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tion at points of codimension 1). Such analogs would strengthen the main results
of Sections 3 and 4, which assumed either that there was no ramification, or that
the given cover Y — X was of degree prime-to-p. |
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