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A B S T R A C T  

Let Y --+ X be a connected G-Galois cover of affine varieties in character- 
istic p, and suppose G = F/P for some p-group P. We show that there is 
a connected F-Galois cover Z --+ X dominating Y --+ X, and that Z --~ X 
can be chosen to have prescribed behavior over a given closed subset of X. 
There are several versions of this result, depending on whether ramifica- 
tion is permitted, and whether adelic behavior is prescribed. The results 
are deduced from a general assertion about embedding problems, which is 
proven for profinite groups. 

1. I n t r o d u c t i o n  

This  p a p e r  proves resul ts  on Galois  covers of affine variet ies  in charac te r i s t i c  

p, showing t h a t  t hey  behave  ex t remely  well under  embedd ing  prob lems  wi th  p- 

group kernel.  Namely,  given such a connected  Galois  cover Y -~ X wi th  Galois  

group G = F / P ,  where  P is a p-group,  is there  a connected  Galois  cover Z --+ X 

wi th  group  F t h a t  domina te s  Y --+ X ?  Moreover,  can Z ~ X be  chosen wi th  

p resc r ibed  local  behavior?  For  example ,  if X '  is a closed subset  of X ,  and  if 

the  res t r i c t ion  Y '  --+ X '  of Y -+ X is domina t ed  by a (possibly  d isconnected)  

F -Ga lo i s  cover Z '  --+ X ' ,  then  can Z -+ X above be  chosen so as to  res t r ic t  to  

Z ~ over X ' ?  This  general  t ype  of p rob lem is t r ad i t iona l ly  cal led an  "embedd ing  

problem,"  since on the  funct ion field level a G-Galo i s  extens ion is be ing  e m b e d d e d  

into a F -Ga lo i s  extension.  Over  an a rb i t r a ry  field of charac te r i s t ic  p > 0 (e.g. 

finite fields or Lauren t  series fields), this  pape r  answers several  quest ions  of this  

t ype  in the  affirmative.  
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In particular, if Y ~ X is @tale, then in the situation above there is such a Z 

which is @tale over Y and extends the given Z ~ (Theorem 3.11). Moreover this 

remains true even if Y --+ X is ramified, provided that its degree is prime to p 

(Theorem 4.3). In the case of curves (where X'  is a finite set of points), it is true 

even if Y --+ X is merely assumed to be tamely ramified (Theorem 5.14). In this 

context the local condition corresponds to specifying the residue field extensions 

over a given finite set of points - -  and this is a non-trivial condition if the base 

field k is not algebraically closed. An "adelic" version for curves, in which X ~ 

is taken to consist of spectra of local fields rather than points, is also shown 

(Theorem 5.6). 

Problems of this sort have been considered in several papers. The case that  

X is the spectrum of a global field and X ~ is adelic was shown in [Ne, Main 

Theorem]; but there ramification at places outside of X ~ is permitted and the 

kernel of F --+ G is allowed to be somewhat more general. (Only the number 

field case was explicitly treated in [Ne], but the result carries over to the function 

field case. Cf. also [SW].) In [Ka, Theorem 2.1.5], a related result was shown for 

projective curves X over separably closed fields, with adelic conditions. (This 

generalized a result of [Hal, w in the case G = 1; cf. [Ka, Theorem 2.1.4].) But 

there the dominating cover Z need not be connected. On the other hand, in [Se2, 

Theorem 1] (in connection with the solvable case of the Abhyankar Conjecture), it 

was shown for X -- A 1 over k -- k that Z can be chosen so as to be connected, if no 

local conditions are imposed. A version for affine curves viewed as rigid analytic 

spaces (and with X ~ taken to be an affinoid) appeared in [Ral, Prop. 4.2.5, 

Cor. 4.2.6], using the machinery of Runge pairs, as part of the proof of the full 

Abhyankar Conjecture for A 1. A version motivated by formal schemes appeared 

in [Ha2, Prop. 4.1], allowing Y --+ X to be ramified and of degree prime to p. 

This result, which relied on the moduli of p-covers in [Hall, appeared in the 

context of proving the Abhyankar Conjecture for general affine curves over k = 

(assuming [Ral]). Afterwards [Ra2], Raynaud pointed out the relationship with 

[Ral, Prop. 4.2.5], and found a rigid analytic version that also allows Y --+ X 

to be ramified and prime to p. This version could then be used instead of [Ha2, 

Prop. 4.1], to prove the general case of the Abhyankar Conjecture by rigid analytic 

(rather than formal) methods, assuming the case of A 1. (The opposite is also 

possible. That  is, the rigid approach of [Ral] to the Abhyankar Conjecture for 

A 1 could instead be replaced by a formal scheme approach; cf. [HS, Theorem 6].) 

F. Pop later showed in [Po, Thm. B] how the original version [Ral, Prop. 4.2.5] 

could already be used to prove the Abhyankar Conjecture for general curves, and 



Vol. 118, 2 0 0 0  EMBEDDING PROBLEMS WITH LOCAL CONDITIONS 319 

even to prove that embedding problems with quasi-p kernel can be solved properly 

(i.e. with Z connected) for affine curves over k = k (without local conditions). 

The results of the current paper can be regarded as generalizations and simpli- 

fications of the corresponding results of [Ral], [Ha2], and [Ra2]. Namely, the base 

space need not be a curve, and the base field can be arbitrary (of characteristic 

p) - -  thus providing arithmetic content. Also the machinery of rigid and formal 

geometry (including the Runge pairs and the moduli of p-covers) are avoided in 

the current version, by allowing a more elementary notion of "local condition." 

Just as the related results in those papers played a role in proving Abhyankar's 

Conjecture, the results here should be applicable to extensions of that conjecture 

to more general spaces. 

The assertions in this paper are for a]fine varieties, and break down for projec- 

tive varieties. For example, in Theorem 5.14, the embedding problem is solved 

by a tamely ramified connected cover of an affine curve; but no assertion is made 

about the behavior over it" nity. In fact, at least one point on the projective 

completion must be allowed to ramify wildly. This is related to the statement of 

the "Strong Abhyankar Conjecture" [Ha2, Thm. 6.2], where all but one branch 

point can be taken to be tame. 

The structure of this paper is as follows: Section 2 is purely group theoretic, 

and provides a cohomological criterion for solving (group-theoretic) embedding 

problems with p-group kernel and local conditions. The ideas for this section 

are related to ideas in [Ka], [Se2], and [Ral]. Sections 3 and 4 then apply this 

to embedding problems over affine varieties of arbitrary dimension in character- 

istic p, by using that the appropriate fundamental groups have p-cohomological 

dimension 1 and infinite p-rank, and by showing an appropriate surjectivity on 

H l's. Section 5 turns to results for curves, and shows the adelic result (Theorem 

5.6) similarly. In order to show the result in the case that Y -+ X is tamely 

ramified (Theorem 5.14), the strategy is reversed: Theorem 5.6 is combined with 

group-theoretic results to obtain Theorem 5.14, and from that it follows that the 

corresponding fundamental group has p-cohomological dimension 1. 

ACKNOWLEDGEMENT: I would like to express thanks to Bob Guralnick for 

group-theoretic discussions and for his comments on this manuscript. I would 

also like to thank Claus Lehr and Rachel Pries for their comments as well. 

2. Embedding problems with p-kernel 

This section considers embedding problems for profinite groups with p-group 

kernel. Propositions 2.2 and 2.3 provide cohomological criteria for the existence 
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of solutions satisfying given local conditions. The approaches in [Ka, w [Se2, 
w and [Ral, w appear here in a non-geometric setting. Later, in Sections 3-  

5, the results here will be applied to fundamental groups of affine varieties in 

characteristic p. We begin with some terminology in this general setting. Here 

the notion of being "C-solvable" will correspond geometrically to an embedding 

problem being solvable with given local conditions. 

If H, F, G are profinite groups, then an e m b e d d i n g  p r o b l e m  g for II consists 

of a pair of surjective group homomorphisms (a: H -+ G, f:  F --+ G). A w e a k  

so lu t i on  to g consists of a group homomorphism/3: II ~ F such that f/3 = a. 

If such a/3 is surjective, then it is called a p r o p e r  so lu t ion  to g. We will call S 

w e a k l y  [resp. p roper ly ]  so lvable  if it has a weak [resp. a proper] solution. The 

ke rne l  of g is defined to be N :-- ker(f). We call s a finite embedding problem 

[resp. a p-embedding problem, an e l e m e n t a r y  abe l i an  p-embedding problem, 

etc.] if N is a finite group [resp. a p-group, an elementary abelian p-group, etc.]. 

An elementary abelian p-embedding problem g = (a: II ~ G, f:  F --+ G) is 

i r r educ ib l e  if the conjugation action of F on P = ker f defines an irreducible 

representation; or equivalently, if P is a minimal non-trivial normal subgroup of 

F. 

Let s = (a: II--+ G, f:  F--+ G) be an embedding problem for II, and let 

r --+ II be a homomorphism of profinite groups. Write G1 = ar  C G, 

F1 = f - l ( G 1 )  c F, and f l  = fir1. Thus r := (ar ~ Gl,fl: F1 -~ G1) 
is an embedding problem for II1, which we call the pu l lback  of g to H1. Note that 

S and r have the same kernel. If/3: II ~ F is a weak solution to g, then there 

is an induced weak solution to r viz. the pu l lback  r :=/3r --~ F1. 
Suppose that r = {r  is a family of homomorphisms Cj: IIj --+ II of profinite 

groups. We will say that g is w e a k l y  [resp. proper ly]  C-solvable if for every col- 

lection {/3j }jeJ of weak solutions to the pulled back embedding problems r (g), 

there is a weak [resp. proper] solution 13 to g and elements nj E N = ker(g) 

such that r = inn(nj) o/3j for all j ~ g. (Here inn(nj) e Aut( r )  denotes 

left conjugation by nj.) Note that weak solutions/3j are considered in this defi- 

nition, even in the proper case. For a geometric interpretation of these notions, 

see Proposition 3.1. 

The following reduction lemma allows us to restrict attention to the class of 

finite p-embedding problems that are elementary abelian and irreducible: 

LEMMA 2.1: Let r --  { q ) j } j e J  be a family of homomorphisms Cj: Hj -+ H 
of profinite groups. Suppose that every irreducible finite elementary abelian p- 
embedding problem for H is weakly/resp, properly] C-solvable. Then so is every 
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finite p-embedding problem Eor II. 

Proof: Consider a finite p-embedding problem s = (a: I1 --+ G, f :  F ~ G) for 

H, together with weak solutions ~j to the pullbacks 

Ej = e l (E)  = 115 Gj ,y :  

We wish to show that  C has a weak [resp. proper] solution f~ such that  r (/~) 

agrees with each f~j after conjugation by elements pj of P = ker(E). We proceed 

by induction on the order of P. The desired conclusion is immediate if P = 1, 

and so we assume that  P is non-trivial. 

Since P is a non-trivial p-group, it has a non-trivial center Z. Since P is normal 

in F, and since Z is characteristic in P, it follows that Z is normal in F. Let A 

be a minimal non-trivial normal subgroup of F contained in Z. By minimality, 

A is an elementary abelian p-group (since its subgroup of p-torsion elements is 

also normal) and F acts irreducibly on A via conjugation. Letting P = P/A and 

= F/A, we obtain exact sequences 

(1) 1 - ,  P 1 

and 

(2) 1 -+ A ~ F 4 F  ~ 1. 

Consider the embedding problem ~ = (a: I1 -> G, f :  F -+ G) for 11, and let 
~j = r : (aCj: Hj ~ Gj,fj:  Fj -+ Gj) be the pullback of E from EI to IIj. 

Since 15 is strictly smaller than P, it follows by the inductive hypothesis that  

is weakly [resp. properly] C-solvable. That is, there is a weak [resp. a proper] 

solution/~ to ~ that  induces the weak solutions f~ := g/~j to ~j up to conjugation 
by elements ihj E /5 (i.e. /~j = inn(pj)/~r Choose pj e P over pj C /5. Let 

F~ = ~(II) C F, let F ~ = g-l(~,o) C F, and let g~ = glr o. [Thus F~ = F, 

P ~ = F, and g~ = g in the proper case.] Now E ~ = (/~: 11 ~ ~O,gO: F o __+ f,o) is 

an irreducible finite elementary abelian p-embedding problem for 11 with kernel 

A, and for each j E J the map inn(p~-l)/~j is a weak solution to the pullback 

g~ = r176 of C ~ from II to Hi. So by hypothesis there is a weak solution 

f~: H --+ F ~ [resp. a proper solution/~: II -+ F] to g~ that induces each inn(p~-t)flj 

up to A-conjugacy. The map f~ is then the desired weak [resp. proper] solution 

to ~ inducing the flj's up to P-conjugacy. II 

If f :  F ~ G is a (continuous) homomorphism of profinite groups, then there is 

an induced map f . :  Hom(11,r) -~ Hom(II, G), given by f.(~,) = f o % Also, if 
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r --4 II is a homomorphism, then there is an induced map r Horn(H, G) --4 

Hom(H1, G), given by r = 3' o r for 3' E Horn(H, G). Consider a family 
r = {r of homomorphisms Cj: IIj --~ H. Then there is an induced map 

r Hom(Yi, G) -4 I-[jog Hom(Hj, G), given by r on the j t h  factor. Similarly, 
if H acts on an abelian group A, then so does each Hj (via Cj), and we ob- 
tain induced homomorphisms r ZI(H, A) --+ ZI(Hj, A) and r ZI(H,A)  --+ 

YIjeg Z1 (Hj, A) on the corresponding cocycle groups. (Here r = 7 o Cj for 

3' C ZI(H, A).) These in turn induce homomorphisms r HI(II,  A) --4 Hi (Hi ,  A) 

and r H 1 (II, A) --4 l-Ijej Hi(Hi ,  A) on cohomology groups. We will say that 

the family r is p -domina t ing  [resp. s t rong ly  p-dominat ing]  if r H 1 (H, P)  -4 

YIjE J H 1(Hi, P) is surjective [resp. surjective with infinite kernel] for every non- 

trivial finite elementary abelian p-group P on which H acts continuously. 

As the following two propositions show, (strongly) p-dominating families r are 

well-behaved, in the sense that every solvable p-embedding problem must also 

be C-solvable (in the strong or weak sense, respectively). In proving Proposition 

2.2, we will need to twist a given weak solution 3' E Horn(H, F) in order to satisfy 

the local conditions corresponding to a p-dominating family r This twisting will 
be via an appropriate 1-cocycle, and will be defined as follows: 

Let A be an abelian normal subgroup of a finite group F, let II be a profinite 

group, and let 3' E Horn(H, F). Then H acts on A via 3' and the conjugation action 

of F on A. With respect to this action, we may consider the group Z 1 (II, A) 
of 1-cocycles. If a E Z 1 (H, A) then we may consider the map a �9 "),: H -+ F 

given by ( a .  7)(rr) = a(r)7(Tr ), for 7r e H. Here a .3' e n o m ( H , r )  because 
a is a cocycle. If we let f:  F --4 G := F/A be the quotient map, inducing 
f . :  Hom(H,F) ~ Hom(H,G),  then a ~ a . 3 '  is a bijection from ZI(H,A)  to 

the fibre of f .  containing 3'. Under this bijection, if a E A = C~ A) then 
da E BI(H,  A) is sent to inn(a -1) o 3'. Also, the above cocycle group ZI(H, A) 

depends only on the fibre of f .  containing % and (a, 3, ~) ~ a �9 "),' defines a 

"twisting" action of this Z 1 (H, A) on that fibre. (In the special case that A is 

central in F, the action of H on A is trivial. The groups ZI(II, A), HI (H,A) ,  

Hom(H, A) then all coincide and are independent of % and we obtain a twisting 

action of this common group on Horn(H, F).) 

Recall (cf. [Sel, I, 3.4, Proposition 16]) that i fp  is a prime number and H is a 

profinite group, then cdp(H) < 1 if and only if every finite p-embedding problem 

for H has a weak solution. The proof of the following result is related to ideas in 
the proofs of [Ka, Theorem 2.1.5] and [Ral, Prop. 4.2.5] (where they appeared 
in more geometric contexts). 
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PROPOSITION 2.2: Let p be a prime number and let II be a profinite group. 
Then the following conditions are equivalent: 

(i) Every finite p-embedding problem for H is weakly solvable (i.e. cdp (H) _< 1). 

(ii) Every finite p-embedding problem for H is weakly C-solvable, for every 
p-dominating family of homomorphisms r = {r Hj --~ H}je j .  

Proof." The implication (ii) ~ (i) is immediate, by taking the Hj 's  to be trivial. 

So we prove (i) ==> (ii). 

Let r = {r IIj -+ II}jeg be a p-dominating family of homomorphisms, and let 

C = (a: H ~ G, f:  F -+ G) be a finite p-embedding problem for H, with kernel 

P.  We wish to show that s is C-solvable. By Lemma 2.1 it suffices to prove 

this under the hypothesis that P is an elementary abelian p-subgroup of F that  

properly contains no non-trivial normal subgroups of F (corresponding to the 

representation being irreducible). Let ~,: II ~ F be a weak solution to E, and 

assume for each j that ~j: Hj --+ Fj C F is a weak solution to the pullback 

~j = r = (aCj: IIj -+ Gj, f j :  Fj --+ Gj). We need to show that ~ has a weak 

solution fl that induces each/~j up to P-conjugacy. 

As above, we have a natural action of Z 1 (H, P) on the fibre of f , :  Hom(H, F) --+ 

Horn(H, G) containing % The same assertion holds with H, F replaced by Hi, Fj,  

and with 7 replaced by ~/j = r Hj ~ Fj, the pullback of ~, from H to 

Hi. Here the action of ZI(1-Ij, P)  is compatible with that of ZI(II,  P).  Since ~j 

and ?j are both weak solutions to Cj, they satisfy f j~j  = aCj = fj"/j; and so 

f~j,Tj E Hom(Hj,  F j) lie in the same fibre of f j , :  Hom(IIj,  F j) ~ Hom(IIj ,  G j). 
Thus there is an element pj E Z I ( H j , P )  such that P j ' T j  = ~j. Let _pj 

be the image of pj in Hi(Hi ,P)  and let p_' = (p_j}j E I ' - [ jHI(Hj ,P) .  Now 

r H I(H, P) -+ I-[j H~ (Hi, P)  is surjective (by the p-dominating hypothesis, if 
P r 1; and trivially, if P = 1). So there is an element _p_ E H I ( H , P )  such that 

r  = e ' .  
Let p E Z I ( H , P )  be a lift of _p (i.e. a representative of the class _p, modulo 

B 1 (H, P)) .  Let ~ = p.~, E Horn(H, F). Then f~ is a weak solution to ~ that  induces 
each f~j up to multiplication by a coboundary dpj E BI(II j ,  P)  C ZI(Hj ,  P)  (for 
some pj e C O (Hi, P)  = P).  But multiplication by dpj is the same as composition 

by inn(p~-l), i.e. right conjugation by pj. So ~ induces each f~j up to P-conjugacy, 

as desired. | 

Recall that the p- rank  of a profinite group II is the dimension of the Fp-vector 

space Hom(II, Z/pZ) of continuous homomorphisms. Equivalently, the p-rank is 
the rank of the maximum pro-p quotient of H. 
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The proof of the following result is related to ideas in [Se2, w and in the proof 

of [Ral, Prop. 4.2.5]. 

THEOREM 2.3: Let p be a prime number and let H be a profinite group of infinite 
p-rank. Then the following conditions are equivalent: 

(i) Every finite p-embedding problem for II is weakly solvable (i.e. cdp(II) _~ 1). 

(ii) Every finite p-embedding problem for II is weakly C-solvable, for every 
p-dominating family of homomorphisms r = {r IIj --+ I I}je j .  

(iii) Every finite p-embedding problem for H is properly solvable. 

(iv) Every finite p-embedding problem for rI is properly C-solvable, for every 
strongly p-dominating family of homomorphisms r = {r Hj --+ II } je j .  

Proof The equivalence of (i) and (ii) was given in Proposition 2.2, and it is 

trivial that (iii) ~ (i). The implication (iv) ~ (iii) follows from the assumption 

that II has infinite p-rank, by taking the IIj 's to be trivial. So it suffices to show 

that (ii) ~ (iv). 
So let r -- {r IIj --+ H} je j  be a strongly p-dominating family of homomor- 

phisms. We wish to show that if s = (a: 1I -+ G, f:  F -+ G) is a p-embedding 
problem for H, then s is properly C-solvable. By Lemma 2.1, it suffices to do this 
in the case that the kernel of f is an elementary abelian p-group P = (Z/pZ) m 

that properly contains no non-trivial normal subgroups of F. That is, we wish to 

show that for such an s and for any family of weak solutions rij to s = r (g), 

there is a proper solution ri: H --4 F to s together with elements pj C P such 

that r = inn(pj)rij C Horn(hi,F) for each j C J.  This is trivial if P = 1; so 

we may assume P ~ 1. 
By (ii), there is a weak solution rio E Horn(H, F) to E together with elements 

pj E P such that r = inn(pj)rij. Since frio = a: II ~ G is surjective, it 

follows that F is generated by rio(H) and P = kerf .  Now rio(H) n P is a normal 
subgroup of rio(II) (since P is normal in F) and of P (since P is abelian). Since 

F is generated by rio(H) and P,  it follows that rio(H) n P is a normal subgroup 

of F. 

If rio(H) N P is all of P ,  then the image of rio contains P and hence it is all of 

F (again since F is generated by rio(H) and P). So in this case rio is the desired 

proper solution and we are done. 

Thus we may assume that rio(H) N P is strictly contained in P. But by the 
irreducibility hypothesis on P,  it follows that rio(H)NP is then trivial. Hence the 

restriction of f:  F --+ G to rio(H) is injective, and thus is an isomorphism onto G 

(being surjective, since frio = a). This implies that rio factors through G; i.e. rio 
is in the image of Hom(G, F) ~ Horn(H, F). 
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Since 1 -+ P -+ F --~ G -+ 1 is a short exact sequence with abelian ker- 

nel, there is an induced conjugation action of G on P (by choosing represen- 

tatives in F). This in turn yields actions of YI on P (via c~: H -+ G) and 

of Hi on P (via a o C j :  IIj ~ G). Let F be the kernel of the induced map 

r H i (  H, P) -+ 1-Ij HI(II j ,  P), taking cohomology with respect to these actions. 

Since F is infinite (by the hypothesis on r while H 1 (G, P) is finite, there is an 

element p_ E F C H 1 (II, P) that is not in the image of c~*: H 1 (G, P) --~ H 1 (II, P). 

Let p E Z 1 (H, P) be a lift of p. Thus we may consider f~ := p./30 e Hom(H, F). 

Here f~ maps to a under nom(II, F) -+ Horn(H, G), because f~o ~-+ ~ under this 

map and because P -- ker(F --+ G). That is,/~ is a weak solution to the embedding 

problem C. Since p e F = ker r = [~j ker r we have that pCj = r (p) = 1. 

So r = f~r = pCj.  ~oCj = ~oCj ~- r = inn(pj)/~/, as desired. 

It remains to show that/~ : H -~ F is surjective, and thus a proper solution to 

the embedding problem E. Now/30 is in the image of Horn(G, F) --+ Horn(H, F), 

whereas p is not in the image of Z I ( G , P )  --4 ZI(II, P); so f~ = P'/~o is not in the 

image of Horn(G, F) ~ Horn(H, F). Thus the restriction of f : F -+ G to/3(H) is 

not injective. That  is, f~(H) n P is a non-trivial subgroup of P. But f~(H) N P is 

normal in F. The irreducibility hypothesis thus implies that  f~(II) n P = P; i.e. 

P C/3(II). Since F is generated by P and/~(H), it follows that /~ is surjective. 
| 

3. p -Embedding  problems for affine varieties: unramified case 

We now turn to the main theme of this paper, viz. p-embedding problems in a 

geometric context, for fundamental groups of affine varieties in characteristic p. 

The group-theoretic results of Section 2 are applied here, and in the following 

sections, in order to obtain results that  assert that  covers Y -+ X with Galois 

group G = F / P  (where P is a p-group) can be dominated by F-Galois covers 

Z --+ X with Z -+ Y ~tale and with prescribed local behavior. This section 

considers the case in which Y --+ X is ~tale (Theorem 3.11), while Section 4 

allows Y ~ X to be ramified (but adds another restriction). Stronger results 

will be shown in the case of dimension 1, in Section 5. 

The link between the group theory of Section 2 and the geometry of these 

sections is made explicit below in Proposition 3.1, which permits Theorem 2.3 

to be applied to fundamental groups to obtain geometric results. To apply The- 

orem 2.3, it is first observed that the fundamental group of an affine variety in 

characteristic p has cdp _< 1 (Corollary 3.3) and infinite p-rank (Corollary 3.7), 

and then it is shown that the local conditions are strongly p-dominating in the 
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sense of w (Proposition 3.8). As a consequence, if Y --~ X is ~tale, the existence 

of the desired cover Z --+ X is shown (Theorem 3.11), in a result parallel to 

[Ral, Corollary 4.2.6] (and indirectly drawing on ideas of [Se2, w In the next 

section, a variant (Theorem 4.3) is shown in which Y ~ X is permitted to be 

ramified but is required to have degree prime to p. 

We begin by recalling some basic terminology. An ~tale cover ("rev8tement 

~tale") f :  Y ~ X is a morphism of schemes that is finite and ~tale [Gr, I, 

Def. 4.9]. The Galois  g roup  Gal(Y/X) of Y ~ X consists of the automorphisms 

g of Y such that fg  = f .  An ~tale cover f :  Y --+ X is Galois  if X and Y are 

connected and Gal(Y/X) acts simply transitively on each generic geometric fibre. 

If Y ~ X is an ~tale cover (not necessarily connected), if ~: G ~ Gal(Y/X) is a 

homomorphism of finite groups, and if G acts simply transitively on each generic 

geometric fibre (via 5), then we will say that Y -~ X and the G-action together 

constitute a G-Galois ~tale cover. 

Let X be a connected locally Noetherian scheme with a geometric base point 

~. A p o i n t e d  6tale cover of (X, ~) consists of an ~tale cover f :  Y ~ X and a 

geometric point ~ E Y such that  f(~) = ~. The pointed Galois dtale covers of 

(X, ~) form an inverse system of pointed schemes, and their Galois groups form 

an inverse system of groups whose inverse limit is the algebraic  f u n d a m e n t a l  

g r o u p  H = ~rl(X,~). (Cf. [Gr, V w If G is a finite group, then there is a 

bijection between the homomorphisms c~: H ~ G and the isomorphism classes 

of pointed G-Galois 6tale covers (Y, ~?) --+ (X,~), under which surjective homo- 

morphisms correspond to connected covers. Composing a with conjugation by 

g e G has the effect of changing the base point of Y (over ~) from 71 to g(~?), but 
it does not affect the isomorphism class of the underlying (unpointed) G-Galois 

cover. Thus isomorphism classes of (unpointed) G-Galois ~tale covers of X are 
in bijection with equivalence classes of homomorphisms c~: II ~ G, two such ho- 

momorphisms being declared equivalent if they differ by an inner automorphism 

of G. 

In the above context, if f :  F--~G is a surjection of finite groups and a : II --+ G 

is a surjective homomorphism, then a weak solution ~: II ~ F to the embedding 

problem E -- (c~: II -+ G, f: F --+ G) corresponds to a pointed F-Galois ~tale 

cover (Z, r ~ (X, ~) that dominates (Y, 7). Here Z is connected if and only if 

is a proper solution to E. If r X1 -+ X is a morphism of connected schemes, 

then G-Galois ~tale covers of X pull back to G-Galois ~tale covers of X1 (and 
such a pullback need not be connected, even if the given cover of X is). On the 

level of equivalence classes of homomorphisms, pullback may be interpreted as 
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follows: 

Let 4, 41 be geometric base points of X, X1 respectively. Then there is a natural 

homomorphism ~b,: 7rl (X1,41) --4 1rl (X, r (~1)). Since X is connected, an isomor- 

phism el: lh(X,r -% ~rl(X,4) is induced by choosing a geometric point 

over 4 on the pro-universal cover ()(r r of (X, r (The choice of 

corresponds classically to choosing a homotopy class of paths from r to ~; and 

varying that choice will vary ~1 by an inner isomorphism. Cf. [Gr, V.5, V.7].) 

Composing, we obtain a map ~1 o r ~h(Xl,~l) --+ ~rl(X,~). The pointed G- 
Galois ~tale cover of X corresponding to a: r l (X,  ~) --+ G then pulls back to the 

pointed G-Galois ~tale cover of X1 corresponding to a o L1 o r ;rl(X1,41) --+ G. 

Forgetting the base points, the unpointed G-Galois ~tale covers of X pull back 

to such covers of X1, as noted above; and this pullback depends only on the 

cover, i.e. is independent of the choice of ~1. To the extent that we will focus on 

unpointed G-Galois covers, we will often suppress the base points and the iso- 

morphism tl, and then simplify notation by just writing r 7rl(X1) 9 71"l(X ) for 

the map between fundamental groups. Thus the equivalence class of the pullback 

a o r  7r1(X1) --+ G of a: 7rl(X) --+ G will be well defined, corresponding to the 

pullback of G-Galois covers. 
The above remarks, together with the definition of "C-solvable" in Section 2, 

yield: 

PROPOSITION 3.1: Let ~bj: Xj  --+ X (for j E J) be a family of morphisms of 

connected schemes. Let Cj = ~bj.: 7rl(Xj) --+ 7h(X) and r = {r Let f: F -+ 

G be a surjective homomorphism of finite groups, let Y -~ X be a connected 

G-Galois dtale cover corresponding to a homomorphism a: ~rl(X) -+ G, and let 

Yj -~ XA be the pullback via Cj. Then the following are equivalent: 

(i) For each choice of F-Galois ~tale covers Zj --+ Xj  that dominate Yj --+ 

Xj  (for j E J), there is a [connected] r-aalois  tZe cover Z --+ X that 
dominates Y -+ X and pulls back to each Zj --+ Xj,  up to isomorphism. 

(ii) The embedding problem 8 = (a: 7rl(X) -+ G,f:  F --+ G) is weakly [resp. 

properly] C-solvable. 

Proo~ In the statement of the proposition, regard ~rl(X) and r l (Xj)  as the 

fundamental groups of X, Xj  with respect to geometric base points 4,4j, and 

choose isomorphisms ~j: ~rl(X,r -% ~h(X,~) as above. Given Y ~ X, the 

choice of map a: ~rl (X, ~) -+ G corresponds to a choice of base point ~/for Y over 

~; and the composition a~jq~j: 7rl(Xj,4~) ~ G corresponds to a choice of base 

point ~/~ for Y~ over 4j- 
Suppose first that condition (i) holds, and let flj: ~h(X~,~) ~ F be weak 
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solutions of the induced embedding problems s for ~h(Xj,~j). Thus ft3j -- 
a~jCj: Zrl(Xj, ~j) --+ G, and t3j corresponds to a pointed F-Galois cover Zj --+ Xj  
that dominates the pointed G-Galois cover Yj --+ Xj.  By (i), there is a [connected] 

F-Galois ~tale cover Z --+ X that dominates Y -~ X and pulls back to each 

Zj -~ Xj ,  as an unpointed F-Galois 6tale cover of Xj.  Choose a base point 

for Z over r/; this corresponds to a weak [resp. proper] solution ~3: II --+ F to 

the embedding problem g. The composition j3~jCj: lrl(Xj, ~j) --+ F is a solution 

to s corresponding to a pointed F-Galois cover of Xj;  and by hypothesis, the 

underlying unpointed F-Galois cover agrees with Zj -+ Xj  (although the base 

points might not agree). Thus ~j and t3~jCj differ by an inner automorphism of 

F - -  viz. by the element gj E F that takes the base point of one to the base point 

of the other. But since the reductions to G of these two pointed F-Galois covers 

of Xj  are both (Yj,r/j) ~ (Xj,~j), it follows that gj E g := ker(f: F --+ G). 

Thus the weak [resp. proper] solution/3 to s induces the given weak solutions ]3j 

to gj up to conjugation by elements of N. This shows that (ii) is satisfied. 

Conversely, suppose that condition (ii) holds, and let Zj ~ Xj be F-Galois 

~tale covers that dominate Yj --+ Xj.  Choosing a base point ~j for Zj over 

r/j, we obtain corresponding weak solutions/3j: ~rl(Xj,~j) --+ F to the induced 

embedding problems Ej. By (ii), there is a weak [resp. proper] solution ~ to g 

that induces each ~j up to conjugacy by N. The map ~: II --+ F corresponds to a 

[connected] pointed F-Galois cover Z -~ X which dominates Y --+ X and whose 

pullback to Xj agrees (as an unpointed F-Galois cover) with Zj --+ Xj .  So (i) is 

satisfied. | 

Via Proposition 3.1, we may obtain results about dominating covers with local 

conditions by applying Theorem 2.3 to fundamental groups. In order to show 

that the hypotheses of 2.3 are satisfied, we will first need to verify that certain 
fundamental groups have p-cohomological dimension _< 1. We do so using the 
following well-known result, which is stated here for the sake of completeness, and 

whose proof is embedded in those of [Se2, Prop. 1] and [Ka, Lemma 1.4.3]. Cf. 

also [PS, Thm. 4.13], which provides a detailed proof in the setting of Corollary 

3.3(b) below. 

PROPOSITION 3.2: Let X be a connected Noetherian scheme. 

(a) Let ~ be the locally constant finite dtale sheaf on X associated to a finite 
rcl(X)-module F. Then HI ( r l (X ) ,F )  = H~t(X,.T" ) and H2(~rl(X),F) injects 

into H~t (X, ~'). 
(b) Let s be a prime number. / f cd t (X)  < I then cd~(~rl(X)) _ 1. 

Proof: (a) Over the pro-universal cover ~7 of X, we have that ~ [ 2  is the con- 
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stant group F.  Moreover, for any finite dtale Y --> X, any a E H~t(Y,i~ly ) is 
represented by a finite dtale F-Galois cover of Y, and is trivialized over )(. Thus 
H i t (2 ,  J:lX) = 0. 

According to the exact sequence of low degree terms [Mi, p. 309] coming from 
the Hochschild-Serre spectral sequence HV(Trl(X), Heqt()C, Jr)) =~ HPe+q(x, 5") 

[Mi, I Thm. 2.20, Remark 2.21(b)], we have that 

0 -+ Hl(Trl(X),H~ --> Hit(x, 5 r) -+ H~ 

--+ H2(Trl(X), H~ ()(,  vl2)) --+ H2t (X, ") 

is exact. Since Hlt(~:,~ '[2) = 0 and He~ = F, we obtain that 
g 1 (71" 1 (X), F))  ~ Hlet(X, jr) and H 2 (Tr 1 (X), F) r H2t (X, ~'). 

(b) Let F be a finite g-torsion r l(X)-module,  corresponding to a locally 
constant g-torsion finite ~tale sheaf ~ .  Then H 2 ( r l ( X ) , F )  r He2t(X, 9 v) 

by (a). By hypothesis, H2et(X,Y) = O. Hence H2(1rl(X),F) -- 0. Thus 

cdt(Trl(X)) _< 1. | 

COROLLARY 3.3: (a) (Serre, [Se2, Prop. 1]) If  X is a connected afline curve over 

a separably dosed field k, then cd(Trl(X)) <__ 1. 

(b) ([Se3, w [PS, Thm. 4.13]) If X is a connected projective curve over a 

separably closed field k of characteristic p > O, then cdp(rl(X))  < 1. 

(c) If X is a connected Noetherian aft/he scheme of characteristic p > O, then 

cdp(Trl(X)) _< 1. 

Proof: (a) Let p = chark. For every g # p ,  we have that cd~(X) _< 1 by [AGV, 
IX, Cor. 5.7]. On the other hand if g = p, then the same conclusion holds by 
[AGV, X, Thm. 5.1]. So cdl(Trl(X)) _< 1 for all g, by Proposition 3.2(b). That  

is, cd(Irl(X)) < i. 

(b) By [AGV, X, Cor. 5.2], cdp(X) _< d i m X  = 1, so the conclusion follows 
from the proposition. 

(c) By [AGV, X, Thm. 5.1], cdp(X) _< I. So the conclusion again follows. 
| 

In order to verify the hypotheses of Theorem 2.3, we will use Corollary 3.3(c) 
above and Corollary 3.7 and Proposition 3.8 below. For those results, we need 

some preparation. 

LEMMA 3.4: Let R C S be an integral extension of integral domains, and let I 

be a non-zero ideal of S. Then I N R is a non-zero ideal of R. 
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Proof: This is a special case of [Bo, V, w Cor. 1 to Prop. 1], taking A = R, 

A' = S, a' = I,  p = (0), p' = (0). (One can alternatively proceed as in the 

remark at [La, p. i0].) | 

LEMMA 3.5: Let X be a Noetherian normal integral scheme and let ~ be the set 

of points of X of codimension 1. Then N~er, Ox,r is the ring of global functions 

on X .  

Proof: If U = Spec R is any affine open subset of X, then R is a Noetherian inte- 

grally closed domain, and hence a Krull domain [Bo, VII, 1.3, Cor. to Lemma 1]. 

Thus R = Flr Ox,r where Eu is the set of points of U of codimension 1 

(corresponding to the height 1 primes of R) [Bo, VII, 1.6, Theorem 4]. Since this 

is true for each U, the conclusion follows. | 

For any ring R of characteristic p, we define the Fp-linear map p: R --+ R by 

~(r) = r p -  r. If R is a domain and a l , . . . ,  am E R, then consider the R-algebra S 

given by adjoining elements Xl , . . . ,  xm subject to x p - xi = ai (for i = 1 , . . . ,  m). 

This extension R C S is finite, 6tale, and P-Galois, where P is an elementary 

abelian p-group of rank m. Conversely, every P-Galois finite 6tale extension of R 

is of this form, by Artin-Schreier theory. Moreover S is a domain if and only if 

the images of the elements ai in R / ~ ( R )  are Fp-linearly independent. Thus the 

p-rank of 7rl(Spec R) is the dimension of R/g3(R) as an Fp-vector space. 

For any ring S and any n > 0, the map ~o : S n --+ S n is defined for the ring S '~, 

and it is given by p : S --+ S on each coordinate. If M is a subset of S", then we 

may consider the image of M under p; this is also a subset of S n. 

LEMMA 3.6: Let k be a field of characteristic p, let R be a finitely generated k- 

algebra which is an integral domain but not a field. Let S be an integral domain 

that contains R and is finite as an R-algebra. Let I be a non-zero ideal of R, and 

let M be a non-zero R-submodule o r s  n. Then I M / ( I M  n p(M))  is an infinite 

dimensional Fp-vector space. 

Proof: Let M1 , . . . ,  Mn C S be the images of M under the n projection maps 

7rj: S n --+ S. Then each Mj is an R-submodule of S, and some Mj is non-zero. 

Now rj  ( I M  N ~(M))  C I M j  n p(Mj) ,  and so the map r j  induces a surjective Fp- 

homomorphism I M / ( I M n p ( M ) ) - ~ I M j / ( I M j ~ ( M j ) ) .  Thus IM/ ( IMNg a (M) )  

is infinite dimensional if I M j / ( I M j  A ~(Mj))  is. So replacing M by Mj,  it suffices 

to prove the result under the assumption that M is a non-zero R-submodule of 

S (i.e. that  n -- 1). 

By Noether Normalization [Bo, V, 3.1, Theorem 1], there exist algebraically 

independent elements x l , . . . ,  Xd E R such that R is integral over the polynomial 
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ring T = k[Xl , . . . ,  Xd] C R, and such that J := I N T is generated by x l , . . . ,  Xh 
for some h > 0. Here d > 0 since R i s  not a field. Also, R i s  finite over T 

since it is integral over T and is finitely generated as a T-algebra (since it is 

finitely generated over k). Moreover J 7~ (0) by Lemma 3.4, and so h > 0; thus 

x l E J c I .  

Now T is the ring of functions on A d C ~k" Let V be the normalization of ~k 

in the fraction field L of S. Then lr: V --+ ~k is a finite morphism of Noetherian 

normal integral projective varieties, and V ~ := r -1C Ad) is an affine open subset of 

V whose ring of functions S' is the integral closure of S. Also, V - V'  = lr - l (H) ,  
where H C ~k is the hyperplane at infinity; the associated reduced scheme is a 

union of finitely many divisors Di on V. Since V is normal, for each i there is a 

discrete valuation vi: L* ~ Z associated to Di. Note that  vi(xl) < 0, since xl 

has a pole along H. 

By Lemma 3.5, if an element s E S r = O(V') is regular at the generic point 

of each Di, then it is a global function on the projective variety V and hence is 

constant (i.e. lies in a finite field extension of k). So for each non-constant s E S', 

there is an i such that  vi(s) < 0. Let a be the smallest (non-negative) integer such 

that vi(m) is of the form -p~b for some i, some non-constant m E M C S ~, and 

some positive integer b prime to p. (Here not every element in M is constant, 

since M C S is a non-zero R-module. So the minimum is being taken over a 

non-empty subset of the non-negative integers, and is thus well defined.) Fix 

such a choice of i and m corresponding to a. For each positive integer j ,  consider 

the element mj := xJlP"+lm E I M .  Then vi(mj) -- jpa+lvi(xl)  - p a b .  Thus 

paUvi(mj) (i.e. pa strictly divides vi(mj)) and vi(mj)  < 0 for all j ,  and the 

integers vi(rnj) are distinct, since vi(xl) < O. 

Now consider any non-trivial Z/pZ-linear combination c of the elements mj (i.e. 

any linear combination with at least one non-zero coefficient). Since pa ilvi(mj) < 
0 and the integers vi(mj)  are distinct, it follows that c satisfies pallvi(c ) < 0. Let 

m' e M.  If m' satisfies v~(m') > O, then v~(gv(m')) > 0 and hence c 7~ ~(m') 
(since vi(c) < 0). On the other hand, if instead m' e M satisfies vi(m') < 0, then 

the minimality of a implies that  p~lvi(m') < 0 and so p~+llvi(p(rn')); so again 

c r p(m') (since pallvi(c)). This shows that such a linear combingtion c does 

not lie in io(M). Thus the elements mj �9 I M  c S (for j = 1, 2 , . . . )  are linearly 

independent modulo p(M); and so I M / ( I M  A ga(M)) is an infinite dimensional 

Fp-vector space. | 

COROLLARY 3.7: Let k be a field of  characteristic p, and let R be a finitely 
generated k-algebra which is an integra/domain but not a field. Then Irl (Spec R) 
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has infinite p-rank. 

Proof: As remarked above, the p-rank of 71" 1 (Spec R) is equal to the dimension 

of R / p ( R )  as an Fp-vector space. This dimension is infinite by Lemma 3.6, by 

taking I to be the unit ideal, M = R = S, and n -- 1. | 

The following result parallels [Ral, Prop. 4.2.1], as does its proof (which uses 

Lemma 3.6). But the proof is able to be much simpler here than for the result 

in [Ral], since it deals just with subschemes rather than affinoids. Note that the 

strategies both here and in [Ral, w are inspired by that of [Se2, w (For the 

definition of a (strongly) p-dominating family r = {~gj}jEj, see Section 2.) 

PROPOSITION 3.8: Let X = Spec R be an irreducible a//ine variety of dimension 

> O, and of finite type over a field k of characteristic p > O. Let X ~ be a closed 

subset, strictly contained in X ,  and having connected components X1, . . . ,  X~. 

Let Cj: 7rx(Xj) ~ lq (X)  be induced by the inclusions Xs ~ X ,  and let r = 

{r Then r is strongly p-dominating. 

Proo~ Let H = 7rl(X) and IIj = ~rl(Xj). Let P = (Z/pZ) n be a non-trivial 

finite elementary abelian p-group together with a continuous action of H (so 

n > 0). We wish to show that the induced homomorphism r H I ( H , P )  --+ 

I-Ij H1 (IIj, P)  is surjective with infinite kernel. 

Under the above action, the finite group P becomes a H-module, and corre- 
sponds to a locally constant finite ~tale sheaf 3 c of Z/pZ-vector spaces over X. 

(Namely, if U is a connected ~tale open subset of X, then 3r(U) = p~l(u), the 

subgroup of P fixed by ~rl(U).) Similarly, for each j the Hi-module P corre- 

sponds to a finite locally constant ~tale sheaf 9vj of Z/pZ-vector spaces over Xs. 

Over X we have the Artin-Schreier exact sequence 

o -~ Z/pZ -+ G~ -5 Ga -+ o 

of ~tale sheaves of Z/pZ-vector spaces [Mi, p. 67], where p(a) = a p - a .  Tensoring 

over Z/pZ with ~" we obtain an exact sequence 

(1) O-~ Jz--+ M .5 M - ~  O 

of ~tale sheaves on X, where M is a locally free sheaf of G~-modules of rank n in 

the ~tale topology. Here 3,t is induced by a locally free sheaf M z  of rank n in the 

Zariski topology [Mi, p. 134]; in particular .Mz is coherent. Since X = SpecR 
is affine, and since R is Noetherian (being of finite type over k), there is an 
equivalence of categories between coherent Ox-modules (in the Zariski sense) 
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and finite R-modules [Ht, II, Prop. 5.4]. Under this equivalence, the locally free 

Zariski sheaf Adz corresponds to a locally free R-module M of rank n > 0. Here 

the map iv: J~4 -+ A~ corresponds to a Z/pZ-linear map iv: M --+ M. 

More explicitly, the action of H on P has a kernel (I) C H which is normal and 

of finite index, and which corresponds to a Galois finite dtale cover W --+ X (of 

Galois group H/O). The action of (I) = ~I(W) on P = (Z/pZ) '~ is trivial, and 

so J~ lw is free of rank n. Thus A/[(W) = S '~, where W -- SpecS. By the sheaf 

axiom, M is the equalizer of the two natural maps ,M(W) ~ Ad(W Xz W); 

and in particular M is an R-submodule of S n. Also, the map iv: M --+ M is 

the restriction of the corresponding map on ~4(W) = S n, which is given by the 

classical map iv: S --+ S on each coordinate. 

Since X is affine and since Ad is induced by the coherent Zariski sheaf Adz 

corresponding to the R-module M, we have H~ JM) = M and Hi(X, .M) = 0 
(by comparison of ~tale and Zariski cohomologies for coherent sheaves [Mi, III 

3.8]). So the exact sequence of sheaves (1) gives rise to the exact sequence 

(2) M -~ M ~ H 1 (X, ~') --+ 0. 

That is, H I ( x , 5  v) = M/IV(M). Similarly, for each j ,  we have HI(Xs,.T'S) = 
MS/p(Mj) , where M s = M / b M  and b is the ideal of X s. Moreover H 1 (X, ~)  = 

HI(II ,  P) and HI(Xs,.TzS) = HI ( I I j ,P )  by Proposition 3.2(a). So 

f l  HI(Hs, P) = HI(xs,.FS), 
j = l  j : l  

and r may be identified with the map MIp(M ) ~ 1-I~=l Ms/~(Mj). It remains 

to show that  this map is surjective with infinite kernel. 

Since X1, . . .  ,Xr are pairwise disjoint closed sets, their idea ls /1 , . . .  ,IT C R 

are pairwise relatively prime. So M ~ M ~ := 1-I~'=1 MS is surjective by the 
T M Chinese Remainder Theorem. Hence so is the composition M ~ FIs= 1 j 

I-I~=1 Mff~(Mj), which factors through M/gv(M) --+ I'I~=l MS/p(Ms). So that 
latter map is also surjective, as desired. 

Finally, we show that the map M/~(M) --+ 1-I~=1 MS/~(Ms) has infinite kernel. 
r Let I = NS=I IS, so that M' = M/IM. Now I, M r 0; the R-module M is 

contained in S'~; and S is finite over R. So by Lemma 3.6, IM/ ( IM N IV(M)) 
is infinite. But IM/ ( IM N IV(M)) is contained in the kernel of M/p(M) 

T M'/~(M') = 1-'[S=I MS/IV(Ms). Thus this kernel is indeed infinite. | 
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Example 3.9: Let p = 3, let P = Z/3Z, let R = k[x,x -1] and let X = SpecR. 

Also, let S = k[y,y -1] where y2 = x, and let Y = SpecS. Then C := Gal (Y /X)  

is cyclic of order 2, and there are two actions of C on P, each inducing an action of 

II = r l  (X) on P and yielding a p-embedding problem $ = (a: II --+ C, f :  F -~ C). 

The  first of these two actions is the trivial one, corresponding to the case that  

F is cyclic of order 6. In this case the R-module M in the proof above is R itself, 

viewed as a submodule of S, and the map gg: M --~ M is just the usual map 

on R. Here ker(p) = H~ P)  = Z/3Z and cok(p) = Hi (H ,  P)  = Hom(H, P)  = 

R / p ( R ) ,  which is isomorphic to ~)(a,,~)=l x'~k if k is algebraically closed. 

The second of these two actions, in which the generator of C acts on P by 

a ~-~ - a ,  corresponds to the case that  F = $3. Here M is again a free R-module 

of rank 1, but the map p: M --+ M is not the obvious one. This is because M is 

now the submodule yR  = ~ ( 2 , n ) = l  Ynk C S. Here ker(p) = H~ P)  = 0, and 

cok(~) = H 1 (II, P)  = M / p ( M )  is isomorphic to ~(6,n)=1 y"k  if k is algebraically 

closed. 

Note that  the R-module M is free of rank 1 for each of the two actions above, 

but  the maps gg: M --+ M are different. Thus ~ depends not just on the isomor- 

phism class of M, but also on the embedding of M into S n (corresponding to the 

action of II on A). | 

As a result of the above proposition together with Theorem 2.3, we obtain: 

COROLLARY 3.10: Let X and r be as in Proposition 3.8. Then every finite 

p-embedding problem for ~rl (X) is properly C-solvable. 

Proof: The p-rank of n l (X)  is infinite, by Corollary 3.7. Also cdp( r l (X) )  _< 

1, by Corollary 3.3(c). So condition (i) of Theorem 2.3 holds; hence so does 

condition (iv) of that  result. By Proposition 3.8, r is a strongly p-dominating 

family. So every finite p-embedding problem for H is properly C-solvable, by the 

conclusion of 2.3(iv). | 

Reinterpreting the above result in light of Proposition 3.1, we obtain the main 

result of this section, concerning affine varieties X over an arbi trary field of 

characteristic p > 0: 

THEOREM 3.11: Let X be an irreducible affine variety of dimension > 0 and of 

finite type over a field k of characteristic p. Let P be a p-subgroup of a finite 

group F; let G = F /P ;  and let Y --4 X be a connected G-Galois 6tale cover. Let 

X ~ C X be a proper dosed subset, let y i  = y Xx  X ~, and suppose that Z'  -~ Y~ 

is a P-Galois ~tale cover such that the composition Z ~ --+ X t is F-GaJois. Then 
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there is a connected P-GMois ~tMe cover Z --+ Y such that the composition 

Z --+ X is F-Galois, and such that Z Xx  X '  ~ Z t as F-Galois covers. 

Proof: Let f :  F -+ G be the quotient map, and let a: r l ( X )  --+ G be a sur- 

jection corresponding to the connected G-Galois 6tale cover Y ~ X. Also, let 

X 1 , . . . ,  Xr  be the connected components of X' ,  and let Cj, r be as in the state- 

ment of Proposition 3.8. By Corollary 3.10, the finite p-embedding problem 

s = (a: ~rl(X) --+ G, f :  F ~ G) is properly C-solvable. So the conclusion follows 

from the implication (ii) ~ (i) of Proposition 3.1. | 

4. p - E m b e d d i n g  problems for affine var ie t ies :  r ami f i ed  case  

This section, like the previous one, considers p-embedding problems with local 

conditions over affine varieties of characteristic p. That  is, we are given a G-Galois 

cover Y --+ X and a group F with a normal p-subgroup P such that  F / P  = G. 

We then wish to find a F-Galois cover Z --+ X dominating Y --+ X, with Z -+ Y 

~tale, and with Z ~ X ha~cing prescribed local behavior. In Section 3, the given 

cover Y --+ X was required to be ~tale. Here it is permitted to be ramified, but 

we add the requirement that  its degree be prime to p. In a variant of Theorem 

3.11, we show here, in Theorem 4.3, that such problems have solutions. While 

Theorem 3.11 paralleled [Ral, Cor. 4.2.6], the main result in this section is closer 

to paralleling the results of [Ha2, w and [Ra2]. 

The strategy here is adapted from that of [Ra2], viz. defining an appropriate 

fundamental group 1rl(Y/X).  This 7rl is then shown to satisfy the analogs of 

Corollary 3.3(c), Corollary 3.7 and Proposition 3.8, and hence to satisfy the 

hypotheses appearing in Theorem 2.3. As a consequence, that  group-theoretic 

result will apply here, and Theorem 4.3 will follow. 

We begin by fixing terminology and reviewing concepts concerning covers that 

are not necessarily ~tale. Let X be a reduced Noetherian scheme. A morphism 

f :  Y -+ X of finite type is gene r i ca l l y  ~tale  if for every irreducible component 

Y~ of Y, the closure of its image X ~ := f ( Y ~  is an irreducible component of X, 

and yo  __+ X o is ~tale at the generic point. A cove r  of X is a finite morphism 

of schemes f :  Y --~ X which is generically dtale. (If X is irreducible, this is 

equivalent to  the definition in [Ha2, w Thus ramification in codimension >_ 1 

is permit ted here. Given a cover Y --+ X, we define the Galo is  g r o u p  G a l ( Y / X )  

exactly as for ~tale covers (cf. the beginning of Section 3). Similarly, we define 

the notions of a Ga lo i s  cover and a G-Galois  cover exactly as in the ~tale case. 

Next, we define the version of r l  that  will be used in proving Theorem 4.3. If 

X is a connected Noetherian scheme and Y --+ X is a Galois cover (not neces- 
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sarily ~tale), then we will let 1rl(Y/X) denote the Galois group of the maximal 

connected pro-cover of X that is ~tale over Y. More precisely, if compatible geo- 

metric base points are chosen on X and Y, at which Y ~ X is ~tale, then we 

may consider the inverse system {Zv}~ of pointed connected ~tale covers of Y 

that are Galois over X. The group ~rl (Y/X)  is then defined to be lim Gal(Z~/X). 

Since the pro-universal cover of Y is Galois over X, it follows that there is an 

exact sequence 1 -+ ~rl (Y) ~ 71"1(Y/X) -+ Gal(Y/X) -+ 1. 
Note that  above, if X1 is a connected closed subset of X and Y1 ~ is a connected 

component of Y1 := Y x i  X1, then there is an induced map rl(Y~/X1) -+ 
~1 (Y /X)  (determined up to inner automorphism, corresponding to the choice of 

a base point). This map is compatible with the maps between the respective 

terms of the above exact sequence and the analogous sequence for rl(Y~/X1).  

PROPOSITION 4.1 : Let X = Spec R be an irreducible a//ine variety of dimension 

> O, and of finite type over a field k of characteristic p > O. Let .7: Y --+ X be a 
finite Galois cover of degree prime to p, and let 1-I = ~rl (Y/X) .  
(a) Then cdp(fI) _< 1. 

(b) The group fl has infinite p-rank. 
(c) Let X '  C X be a closed subset, strictly contained in X,  and having connected 
components X1, . . .  ,Xr. For each j, suppose that the pullback Yj = Y Xx Xj  
-+ X is generically dtale. Let yjo be a connected component of Yj; let fIj = 

~I(Yj~ let Cj: IIj --+ II be induced by the inclusion Xj r X; and let 
r = {r Then r is strongly p-dominating. 

Proo~ (a) The group lrl(Y) is a closed subgroup of 1rl(Y/X), with quotient 

group G := Gal(Y/X). The index (Trl(Y/X): ~rl(Y)) is equal to [G[ = deg(3'), 

which is prime to p. So by [Sel, 1.3.3, Prop. 14], these two profinite groups have 

the same cdp. The assertion now follows from Corollary 3.3(c). 

(c) Consider a continuous action of l=I on a non-trivial finite elementary abelian 

p-group P, and the induced action of rIj on P. We wish to show that  the induced 

homomorphism r H 1 (rI, P) --+ ~ j  H l(l=Ij, P) is surjective with infinite kernel. 

Restricting the actions of l=I and of l~Ij to the closed subgroups ~rl(Y) and 

Irl(Yj~ we may regard P as a module over ~rl(Y) and over 7rl(Yj~ By the 

Hochschild-Serre spectral sequence HP(G, Hq(rl (Y), P) ) => HP+q(fI, P) (cf. 

[Sel, I 2.6(b)] or [Sh, p. 51]), there is an exact sequence 

Hi(G, p,u(Y)) _~ HI(I~I, p)  __+ Hl(~rl(Y), p)a __+ H2(G, p,u(Y)). 

Here the first and last terms vanish, since G is of order prime to p and since P is a 
p-group [Sel, 1 3.3 Cot. 2]. Thus Hi(H, P) --+ HI(~rl(Y), p)C is an isomorphism. 
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By Proposition 3.2(a) we may identify HI(Trl(Y),  P) with H~(Y, .Ty), where 9Vy 

is the locally constant finite p-torsion ~tale sheaf on Y associated to P (viewed as a 

r l(Y)-module).  We thus identify HI(I'I, P) with Hi(y,  .Ty) ~ = g~(~rl(Y), P )a .  

Similarly, letting Gj = Gal(Yj~ c G for each j ,  the exact sequence 

1 --+ lh(Yj ~ -+ 7rl(Yj~ -~ Gj ~ 1 

allows us to identify HI(I~Ij, P) with HI(Yj~ aj = HI(~rl(Yj~ p)a~. For 
each j ,  the closed set Yj = "/-I(Xj) is a disjoint union of connected compo- 
nents Yj,1,... ,Yj,mr with Yj,1 = yjo. We may then identify the induced G- 

module Indaa~ HI(1rl(Yj~ P) with I-It HI(Trl(YJ,~), n),  and thus HI(I=Ij, P) = 

H 1 (Trl (rio), p)Gj with (1-It H1 (lrl(Yj,t), P))  a. 
By Proposition 3.8, the map r : HI(r l (Y) ,P)  --+ I-Ij,~HI(~h(Yj,t),P) is 

surjective. This restricts to a map HI( r l (Y) ,  p)a _.+ (l-Ij,~ Hl(zcl(YJ,l), p))C, 
which is surjective since the order of G is not divisible by p. (Namely, if z E 

(I[j,tHI(Trl(Yj,t),P)) a C IIj,tHl(Th(Yj,t),P) then some w E HI(~rl(Y),P) 
maps to z; and then ]-~Y':~geag(w) E HI(~rI(Y),P) a also maps to z.) This 

surjectivity and the above identifications 

HI(II, P) = HI(Trl(Y),P) a, Hl(rlj ,P) = (1-I Hl(rl(Y~,t),P)) a, 
t 

show that the map r HI(II, P) ~ l'-[j HI(IIj, P) is surjective, as desired. It 

remains to show that r has infinite kernel, or equivalently that 

HI(y, .Ty) G ~ (H c = H I ( y ' , . T y , )  G 

j,t 

does, where Y' = (J Yj,g = "~-I(X'). 
The exact sequence (2) in the proof of Proposition 3.8, but with Y instead of 

X, takes the form 

(2') My 2+ My --+ HI(y,.Ty) --~ O. 

Here My is a finite locally free Rl-module (where Y = SpecR1), and it corre- 

sponds to the locally free sheaf M y  = .Ty | Ga on Y. As in the proof of 
Proposition 3.8, My is a finite Rl-submodule of S n, for some domain S that is 

a finite ~tale extension of R1, where n is the rank of P. Restricting the sequence 

(2 ~) to the G-invariant subspaces yields the sequence 

(3) Mg a -~ M~ --+ HI(y, .Ty) G --~ 0 
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of Z/pZ-vector spaces. The sequence (3) is again exact because G is of order 

prime to p (by an averaging argument as above). Here May is a finite R-module 

contained in My  C S n. Similarly there is an exact sequence 

(3') May, -~ May, --+ H I ( y ' , u v , )  a --+ 0 

of finite modules over R' = R/ I ,  where I C R is the ideal of X'; here May, is a 

finite R'-submodule of S 'n, where S' = R' | S. 
The sequences (3) and (3') are compatible, and the map HI(y,  uv )  a -+ 

HI(Y ' ,Uy , )  c may be identified with the map May/p(May) --+ May, / p( May, ). 
The kernel of this map contains IMay/(IMay N p(MvG)). So to show that the 

kernel is infinite, it suffices to show that IMay/(IMay A p(May)) is. Now I # 0; 

My G is an R-submodule of Sn; and S is finite over R. So by Lemma 3.6, it suffices 

to show that  May is non-zero. 

Since 7: Y --+ X is a cover, ~/restricts to a finite 4tale morphism over an affine 

Zariski open dense subset U c X. Let V = 7-1(U) c Y. There are induced 

homomorphisms lh(U) = r l(V/U) --+ II and 7rl(Y) -+ l~I, and a commutative 

diagram 
7rl(V ) , 71-1 (V) 

7rl (Y) . lrI 

of profinite groups. The action of l~I on P thus induces actions of ~h(U) and 

7h(V) on P which are compatible with the above actions of l~I and ~h(Y) on P. 

The corresponding locally constant finite p-torsion 4tale sheaves ~'v and ~'v on 

U and V are thus compatible with Yy; i.e. J:Y[y = Jry = ~/*(]:v). Consider the 

locally free sheaves/v/v = Jr v | on U and M y  = 5ry @Z/pZ•a on V. As 

in the proof of Proposition 3.8, these two sheaves correspond to finite locally free 

modules Mu and My over the rings of functions of the affine varieties U and V. 

Since P is non-zero, so are ~'u, -h'/u and Mu. But My and hence My  G contains 

Mu. So My G is non-zero, and thus so is A/Iv c = A,t~[v. So ,h~v G is non-zero, and 

hence so is My  G, as desired. 

(b) In part (c), take X'  to be empty, take P = Z/pZ, and take the trivial 

action of l:I on P. Then part (c) asserts that H 1 (l=I, P) is infinite. But this is just 

Hom(l:I, Z/pZ). So l~I has infinite p-rank. 1 

COROLLARY 4.2: Let H and r be as in Proposition 4.1. Then every finite p- 
embedding problem for fI is properly C-solvable. 

Proof'. The pro-p-group I~I has infinite p-rank, by Proposition 4.1(b). Also, 

cdv(l~I) _< 1, by Proposition 4.1(a). So condition (i) of Theorem 2.3 holds for 
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the group l:I, and hence so does 2.3(iv). By Proposition 4.1(c), r is a strongly 

p-dominating family. So every finite p-embedding problem for l=I is properly ~- 

solvable, by the conclusion of 2.3(iv). | 

Using this result, we obtain the following analog of Theorem 3.11, in which the 

G-Galois cover Y ~ X is permitted to have ramification, but in which G = F / P  

is required to have order prime to p (corresponding to P being a Sylow p-subgroup 

of r) :  

THEOREM 4.3: Let X be an irreducible af~ne variety of dimension > 0 and of 

finite type over a field k of characteristic p. Let P be a p-subgroup of a finite 

group F, and assume that G = F / P  is of order prime to p. Let Y -+ X be a 

connected G-Galois cover, let X ~ C X be a proper closed subset, and assume 

that Y~ = Y X x X ~ is generically dtale over X q  Suppose that Z ~ ~ YP is a 

P-Galois ~tale cover such that the composition Z ~ -~ X ~ is F-Galois. Then there 

is a connected P-Galois dtale cover Z -~ Y such that the composition Z --+ X is 

F-Galois, and such that Z X x X ~ ~ Z ~ as F-Galois covers. 

Proof." We proceed as in the proof of Theorem 3.11. Let f:  F --+ G be the 

quotient map, and let &: l r l (Y /X)  --+ G = Ga l (Y /X)  be the canonical map. 

Also, let X I , . . . , X r  be the connected components of X ~ and let r 162  be as 

in the statement of Proposition 4.1. By Corollary 4.2, the finite p-embedding 

problem ~ = (0: z q ( Y / X )  --+ G, f: F --+ G) is properly C-solvable. Paralleling the 

implication (ii) =~ (i) of Proposition 3.1, the F-Galois covers Zj ~ X j  correspond 

to weak solutions flj to the pullbacks r and the desired cover Z -+ X 

corresponds to the proper solution ~ to g that induces the 13j's up to P-conjugacy. 
| 

Remark 4.4: Theorems 3.11 and 4.3 each make an assumption on the given G- 

Galois cover Y --+ X: either that  it is ~tale or that  it is prime-top. If one simply 

dropped these assumptions (e.g. permitting Y --+ X to have wild ramification), 

then the assertion that  the cover Z --+ Y can be chosen to be ~tale would become 

false. This can be seen, for example, by taking F to be cyclic of order p2; p 

and G = F / P  to be p-cyclic; X = A1; and Y -+ X a G-Galois cover that  is 

totally ramified over the origin. For then, any F-Galois cover Z ~ X dominating 

Y --+ X must also be totally ramified over the origin (since its inertia group 

surjects onto G), and then Z --+ Y is not ~tale. | 

While the above remark shows that the separate hypotheses on Y -+ X in 

Theorems 3.11 and 4.3 cannot simply be dropped, in the case that  X is a curve 

there is a natural weaker hypothesis which would lead to a more general assertion 
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containing these two theorems as special cases: That if Y --4 X is a connected G- 

Galois cover of a characteristic p affine variety X having only tame ramification, 

and if G = F / P  for some p-group P, then there is a connected P-Galois @tale 

cover Z --+ Y such that Z --+ X is F-Galois and has given behavior over a given 

proper closed subset X ~ C X. The strategy employed in the proofs of Theorems 

3.11 and 4.3 cannot be used directly to prove such an assertion, since one first 

would need to know that an appropriate version of r l  has cdp _< 1 (but the 

proof of Proposition 4.1(a) above does not carry over). In the following section, 

however, we turn this around - -  proving such an assertion for affine curves X 

(Theorem 5.14), and then deducing that the corresponding version of 7rl has 

cdp < 1 (Corollary 5.16). The assertion is shown by first proving an analogous 

result in an "adelic" situation (Theorem 5.6). 

5. p - E m b e d d i n g  p rob lems  for affine c u r v e s  

The previous two sections showed that p-embedding problems can be solved over 

characteristic p affine varieties, with prescribed behavior over a given proper 

closed subset, under appropriate hypotheses. This section will show that  in 

the case of normal affine curves X, even more is true: that such embedding 

problems can be solved with prescribed behavior over a given finite set of local 

fields (Theorem 5.6). This gives greater control on the local behavior, and will 

also lead to a result on tame covers (Theorem 5.14, referred to at the end of the 

previous section) which subsumes and strengthens the main results of Sections 3 

and 4 in the case of curves. 

More precisely, suppose that X is a normal curve over an arbitrary field k 

of characteristic p > 0. For each closed point ~ E X, the complete local ring 

(Px,~ is a complete discrete valuation ring. By the local field a t  ~ we will mean 

the fraction field K:x,~ := frac r (or for short, K:~). The fundamental group 

of Spec(K:~) may be identified with the absolute Galois group GIQ of K:~, i.e. 

the Galois group Gal()U~//C~) of the separable closure of K:~. If X is connected 

and U C X is a non-empty open subset, the inclusion Spec(K:~) ~-~ U induces 

a homomorphism r G~c~ ~ 7rl(U) between the corresponding fundamental 

groups. 

We begin with the following lemmas. Here, as before, for any characteristic p 

ring A we consider the Fp-linear map go: A ~ A given by ~o(a) = a p - a. 

LEMMA 5.1: Let R be a Noetherian ring of characteristic p that is complete with 

respect to an ideal I.  Let A D R be an R-algebra, let M be a finite R-submodule 

of  A, and suppose that ~ (M)  C M.  Then p ( I M )  = I M  and hence I M  C p(M). 
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Proof  Every element of I M  is a sum of finitely many elements of the form 

im (with i E I and m E M), so we may restrict attention to elements of this 

form. Also, since ~o(M) C M, and since M is an R-module (and in particular 

a Z/pZ-module), it follows that F ( M )  C M,  where F: A -+ A is the Frohenius 

map a ~-~ a p. 

If i E I and m E M, then gg(im) = iPm p - i m  = i ( i p - lm  p - m) E I M  since 

m p E F ( M )  C M.  Thus p ( I M )  C I M .  It remains to show that I M  C p ( I M ) .  

Again, say i E I and m E M. Then m p~ E FJ(M)  C M for each non- 

negative integer j .  Since i E I, we then have ip~-lm pj E IPJ-IM.  Now M 

is finite over R, and R is I-adically complete; so M is equal to its own I-adic 

completion [Bo, III, 3.4, Theorem 3(ii)], i.e. M is I-adically complete. So the 

series - m  - ip-lrn p - ip2-1m p2 - iP3-1m p3 . . . .  defines a well defined element 

m' E M. Thus irn' E I M .  One immediately computes that ~(im') = ira. This 

shows that I M  C ~ ( IM) .  I 

LEMMA 5.2: Let R be a Dedekind domain and let U = SpecRv be a dense open 

subset of X = SpecR. Let A be a normal ring containing Ru ,  and let Mu  be a 

finite locally free Rv-submodule of A of rank n that is dosed under ~: A ~ A. 

Then there is a dense open subset Xo = SpecRo C X such that U U Xo = X ,  

together with a locally free R-submodule M of Mu  having rank n, such that 

(i) the canonical map M | Ru  ~ Mu  is an isomorphism; 

(ii) Mo := M | Ro C A |  Ro is a free Ro-module of rank n with a basis 

B c M;  and 

(iii) Mo is dosed under p, as is M e := M | 6x,~ C A | Ox,e for each 

~ e x - u .  

Proof'. Since Mu is a locally free Ru-module of rank n, there is a dense open 

subset Uo = Spec Ruo of U such that Muo := Mu | Ruo is free of rank n. 

Choose a basis B = {b l , . . . ,  bn} for Muo over Ruo. After multiplying the bi's by 

appropriate elements of R, and shrinking Uo if necessary, we may assume that the 

basis B consists of elements of Mu C Muo C A. In particular, lo(bi) E p(Mu)  C 

Mu,  and so ~ E Mu C Muo for all i. Write ~ -- ~-~j ei,jbj with ei,j E Ruo. 

After again multiplying the bi's by appropriate elements of R and shrinking U0, 

we may assume that  each e~,j E R. 

Let E = U - U 0 .  Then X0 := X - ~  is an affine dense open subset of 

the affine curve X,  say X0 = SpecRo. Thus Ro C Ruo. Let M0 be the Ro- 

submodule of Muo generated by B. Since the bi's are Ruo-linearly independent, 

they are also Ro-linearly independent. So Mo is a free Ro-module of rank n, 

and we may identify Mo |  Ruo = Muo = Mu  | Ruo. Thus we obtain 
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a locally free coherent sheaf A/I on the affine curve X, corresponding (via [Ht, 

II, Prop. 5.4]) to a locally free R-module M of rank n that induces M0, Mu, 

and Mvo (compatibly with the above identifications) over Ro, Ru, and Rvo 
respectively. Since B generates the R0-module M0, it also generates the R~- 

module M e = M | Re = M0 | Re for each ~ C X - U, where R e = 6x,e.  
But ~ = ~~j ei,jbj C Mo C M~ for each ~ C X - U. So/140 and the Me's are 

each closed under the F~obenius map F and hence under p. And since each 

bj E Mu,Mo compatibly, we have B C M. | 

The next result is analogous to Proposition 3.8, but it considers local behavior 

over local fields (rather than over closed subsets), and it requires X to be a 

curve. As in Proposition 3.8, the result does not generalize to local schemes like 

Spec k[[t]], which are not of finite type over the base field k. 

PROPOSITION 5.3: Let k be a field of characteristic p, and let X be a connected 
normal affine k-scheme of dimension 1, of finite type over k. Let U = X - 

{~1 , . . - ,~}  be a dense open subset of X (where r >_ 0). Let H = ~rx(U), let 

rIj be the absolute Galois group of Eej , let Cj: Hj ~ II be the map induced by 
Spec JCe~ -~ U, and let r = {r Then r is strongly p-dominating. 

Proof: Let P be a non-trivial finite elementary abelian p-group, say of rank 

n, together with a continuous action of II. We wish to show that the induced 

homomorphism r H 1 (H, P) -~ r l j  H1 (Hi, P) is surjective with infinite kernel. 

Let R be the ring of functions on X, let Ru be the ring of functions on the affine 

curve U, and let K be the common fraction field of these rings. Let )( be the 

set of places of K/k,  and identify the closed points of X with the corresponding 

places. Since X is an affine curve, there is a place q E -~ that is not identified 

with any point of X. For each place p E )(, let vp: K -+ Z be the corresponding 

discrete valuation. For p -- ~ E X, v~ extends to a discrete valuation ve:/C e -+ Z. 

Let S = { ~ 1 , . . . , ~ }  and S' = SU{q} c )(. 

As in the proof of 3.8, the action of II on P induces an exact sequence 

Mu "~ Mu ~ H 1 (H, P) ~ 0 

of Z/pZ-vector spaces, where Mu is a rank n locally free Ru-submodule of S~, 

and Su is finite ~tale over Ru. By the above exact sequence, we may iden- 

tify HI(II ,  P) with Mu/p(Mu).  Similarly, we may identify HI ( I I j ,P )  with 

Mu,j/p(Mu, j), where Mu5 = Mu | IC~j. We may also thus identify 
r l I 7" r l j= l  Hi (Hi ,  P) with Mb/p(Mb), where M b = I-Ij=IMu5 (which is a mod- 

ule over/(7 := r i j  K:e~ contained in S~u n, where S~ = Sv | It thus suffices 
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to show that  the natural map fu: Mu/go(Mu) --+ Mb/p(Mb)  is surjective with 

infinite kernel. 

Applying Lemma 5.2, we obtain a dense open subset X0 = Spec R0 of X such 

that  U U X0 = X, and a rank n locally free R-submodule M C Mu satisfying 

(i)-(iii) of that  lemma. Thus R0 C /(7,K:~, and B = {bl , . . . ,bn} C M is a 

basis for M | R0 and hence for M b = Mu | El = M | IC' and Mu, j. 
Let Rj = Ox,r and Mj = M | Rj. Since M is locally free and hence flat, 

the inclusions R "-~ Rv "-~ /(7 and R "-+ R I := 1-]j Rj "-+ E I induce inclusions 

M ~ Mt] ~ Mb and M ~-+ M'  := 1-Ij Mj = M | R' ~-+ M~r. Similarly, the 

exact sequence 0 --+ R --~ R' • Ru ~+ IC I induces an exact sequence 

(1) O ~ M ~ M' • My h M~, 

where A is the diagonal map and ~(a', au) = a I - au. 
To show the surjectivity of fu ,  let ~' e Mb/go(Mb), and take x' = (x~, . . . ,  x ' )  

r I E Mb = 1-Ij=l Mu,j lying over ~l. Thus xj = )-~i ri,jbi, where ri,j e/C~j. For 

each i = 1 , . . .  ,n,  the Strong Approximation Theorem [FJ, Prop. 2.11] implies 

that  there is an element ri E K such that  v~j(ri - r~,j) = 1 for 1 < j _< r 

and such that  vp(ri) > 0 for every place p E X - S ' .  Thus ri E Ru and 

so the element x := ~ ribi lies in Mu. Let Ij be the maximal ideal of Rj. 

Then r i - r i , j  e Ij C Rj for each i ,  j ,  since v~(r~-r~d)  = 1. So x - x ~  = 

~=l(r i - r~ , j )b i  E I jMj C go(Mj) C go(Mu,j) for each j ,  by Lemma 5.1 (regarding 

Mj, Mu as subsets of Muh). Thus x - x' E go(Mb) (regarding Mu C Mb). So 

~' is the image of ~ under Mu/go(Mu) --+ M~/go(Mb), where ~ is the class of x 

modulo go(Mu). This proves the desired surjectivity. 

Finally, we show that  the kernel of ftr: Mu/go(Mu) ~ Mb/go(M b) is infinite. 

Let f ,  fu ,  g, g~ be the maps induced by inclusions, in the following commutative 

diagram: 
M/go(M) I . M'/go(M') 

My~go(My) gb/go(Mb). 
It suffices to show that  k e r f  contains an infinite dimensional Z/p~subspace N 

and that  the restriction gIN has finite kernel - -  for then, g(N) is an infinite 

subset of ker(fcr). Now I M  maps into I jMj under M -~ Mj, where I C R is the 

ideal corresponding to the closed subset X - U. But I jMj c go(Mj) by Lemma 

5.1. This is true for all j ,  so N := I M / ( I M  Cl go(M)) is contained in ker.f. This 

set N is infinite, by Lemma 3.6. It remains to show that  ker(gl~r) is finite. 
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Viewing MI,Mu C M~r, and using that p(M')  c M'  (by Lemma 5.2(iii)) 

and p(Mu) C Mu, we have that p(M I) M p(Mu) C M I N Mu = M, where the 

intersection takes place in S~ n. By Lemma 5.1, 

ker(giN) = ( IM M p(Mu)) / ( IM M p(M)) 

is contained in the Z/pZ-vector space V := (~a(M')M p(Mu))/p(M) c M/p(M).  
So it suffices to show that V is finite. Consider the Z/pZ-vector space 

In 17V = {(mI, mv) e M I x  Me[ p(m') = p(rnv) e Su }. 

There is a surjective Z/pZ-vector space homomorphism/5: 1~ ~ V, given by 

~(m',mv) = ~a(m') = p(mv) modulo ~o(M). Now if (m',mv) E W then m I E 

M'  C S "~ C S~ ~ and mu E M~j C S~ c S~'~; so 

m' - mu E Q := ker(go: S ?  --+ S~'~). 

That  is, 5(W) c Q, where & M' x Mu --+ My, is as in exact sequence (1) above. 

Now S~u = Su | K~ is finite ~tale over KT, and thus is a direct sum of finitely 

many fields of characteristic p. Hence so is S~] n. Since Z/pZ is the kernel of ~a 

on any such field, it follows that Q is a finite dimensional Z/pZ-vector space. 

Moreover by (1), 5 induces an injection ~: (M I x Mu)/M ~ Mu,, where M 

is included as the diagonal. Thus if we let W = 17VIM (again, with M as the 

diagonal), then the restriction of 6 to W is an injection W --+ Q. Thus W is 

finite. But th: l~  --+ V factors through W --+ W; and the corresponding map 
p: W -~ V is surjective since/5 is. It follows that V = p(W) is also finite, as 

desired. I 

Remark 5.4: (a) A weak version of the above result holds even if X is projective, 
provided that the base field k is separably closed. Namely, in this situation, r 

is p-dominating (rather than strongly p-dominating). Arguing as in [Ka, 2.2.1], 

this can be shown using the Cartan-Leray spectral sequence HP(X, Rq~.Y) 
HP+q(u,.T) [Mi, III Theorem 1.iS(a)], where ~: U -~ X is the inclusion and 

Y is the p-torsion sheaf on U associated to a H-module P as above. Namely, 

identifying H l(Ke~, ~') with H l(t:~j, $') (where ~ is the fraction field of the 

henselization O~j of Ox,~j), the associated exact sequence of low degree terms 

gives 

0 --+ Hl(X,b. .~) ~ HI(u , .~  ") ---+ I-[  H1 (K~cj,.~ ") --+ H2(X,b..~) 
J 
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(since Rl t .9  r is supported on X - U). But H2(X,  ~.3 c) = 0 by Corollary 3.3(b). 

So the map HI(U ,J  :) --+ 1-IjHI(]C~,~'), or equivalently r HI(II,  P) --+ 

1-Ij H1 (IIj, P), is surjective. 

(b) The argument in (a) above also works in the affine case, using Corol- 

lary 3.3(c) instead of Corollary 3.3(b), even over a non-separably closed field, 

provided that  one uses the strict henselization rather than the henselization. 

This provides a weaker conclusion than 5.3, however. | 

Using the above proposition, we obtain the following result, which asserts the 

existence of proper solutions to p-embedding problems for curves with prescribed 

behavior over finitely many local fields (rather than over closed subsets, as in 

Sections 3 and 4). 

COROLLARY 5.5: Let X ,  H, and r be as in Proposition 5.3. Then every finite 

p-embedding problem for II is properly C-solvable. 

Proo~ The proof is identical to that of Corollary 3.10, except that  Proposition 

5.3 is cited rather than Proposition 3.8. | 

In terms of covers, the above yields: 

THEOREM 5.6: Let X be a connected normal affine curve of finite type over a 

field of characteristic p, let r > O, and let ~1, . . . , ~ be closed points of X .  Let P 

be a normal p-subgroup of a finite group F; let G = F /P;  and let Y -+ X be a 

connected normal G-Galois cover which is dtale away from ~1, . . . ,  ~r. For each j 

let Aj  be a F-Galois /C~-algebra, together with an isomorphism (Spec Aj ) / P 

Y Xx SpecK:~j of G-Galois covers. Then there is a connected normal F-Galois 

cover Z --+ X which is dtale away from ~1,...  , ~ ,  together with compatible 

isomorphisms Z I P  ~ Y as G-Galois covers and Z Xx  Spec/C~j -~ SpecAj as 

F-Galois covers. 

Proof: Let U = X - {~1,-.. ,~r} and let V --+ U be the restriction of Y --+ X 
over U. Following the proof of Theorem 3.11, let f :  F --+ G be the quotient 

map, let c~: ~rl (U) --+ G be a surjection corresponding to the connected G-Galois 

~tale cover V ~ U, and let r be as in the statement of Proposition 5.3. By 

Corollary 5.5, the finite p-embedding problem g = ((~: ~rl(U) --+ G, f :  F --+ G) is 

properly C-solvable. So by the implication (ii) =~ (i) of Proposition 3.1, there is 

a connected F-Galois ~tale cover W -~ U that dominates V --+ U and pulls back 

to each Zj --+ X j  up to isomorphism. Let Z be the normalization of X in W. 

Then Z --+ X is as desired. | 
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Remark 5.7: (a) In the proof of Corollary 5.5, if one replaces Proposition 5.3 

by Remark 5.4(a), then one obtains a proof that if X is a projective curve over a 

separably closed base field k, then every embedding problem for II is weakly C- 

solvable. This in turn implies that a weak form of Theorem 5.6 holds in this case 

(viz. that  the asserted F-Galois cover Z --4 X exists but need not be connected). 

This result is essentially [Ka, Theorem 2.1.5]. And in fact, the cover Z cannot 

in general be chosen to be connected - -  e.g. if the local extensions Aj are taken 

to be trivial, and X is the projective line, then Z just consists of disjoint copies 

of X. 

(b) The above remark (a) no longer holds if the base field k is allowed to be 

arbitrary (rather than separably closed). For example, let k C k' be a separable 

field extension of degree p; let X be the projective k-line; let ~1 be the point 

x = cc on X and let 42 be the point x = 0 on X. Also, let F -- P be cyclic of 

order p; let G be the trivial group; and let Y -4 X be the trivial cover. Let A1 be 

the trivial F-Galois/Ql-algebra (/QI)P = Ind P/Q1, and let A2 be the non-trivial 

F-Galois algebra k'((x)) over IQ= = k((x)). Then in the context of Theorem 5.6, 

the desired F-Galois cover Z -4 X does not exist (even if it is permitted to be 

disconnected), since it would have to be unramified everywhere, hence be purely 

arithmetic - -  contradicting the fact that the residue fields k', k over x = 0, oc 

would be distinct. | 

Using the above theorem, together with the results below, we will obtain (in 

Theorem 5.14) a strengthening of the results of Sections 3 and 4 in the case that  

the base space is a curve. 

LEMMA 5.8: Let F be a finite group with an abelian normal subgroup A, and 

quotient map f: F---~G := FlA.  Suppose that G = C x  E, where A and C have 

relatively prime orders, and suppose also that the exact sequence 1 -4 A -4 

f -X(E)  -4 E -4 1 splits. Then the exact sequence 1 -4 A -4 F -4 G -4 1 splits. 

Proof'. This is equivalent to a theorem of Gaschfitz [Hu, I w Hauptsatz 

17.4(a)]: If A is an abelian normal subgroup of F, A C B C F, and the or- 

der of A is relatively prime to the index (F : B), and if A has a complement in 

B, then A has a complement in F. Namely, in the statement of the lemma, we 

can take B = f - l ( E ) ,  whose index in F is equal to the order of C. | 

If f :  F -4 G and f ' :  F' --4 G are group homomorphisms, then we may form the 

fibre product of groups, namely F x c F ' : - -  { (g, g') E F x F'] f (g) = f ' (g ' )  }. If f is 

surjective with kernel N, then the exact sequence 1 -4 N -4 F -4 G -4 1 induces 

an exact sequence 1 -~ N --4 F x o P' --4 F' --4 1. Here the map P x G pt -4  I~l is 
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the second projection, and the map N ~ F x c  F t is given by n ~-~ (n, 1). 

LEMMA 5.9: Let R be a complete discrete valuation ring of characteristic p, with 

fraction field K and residue field k. Let G be a finite group, let L be a G-Galois 

field extension of K,  and let S be the integral closure of R in L. Suppose that the 

extension R C S is tamely ramified. Let f: F-~G be a surjective homomorphism 

whose kernel is a finite abe//an p-group P. 

Then there is a finite Galois field extension K C K'  whose corresponding 

extension of complete d.v.r. 's is 6tale, such that the induced exact sequence 

(2) 1 --4 P -~ F x a  Gal(K'L/K)  --+ Gal (K 'L /K)  -+ 1 

is split (where the compositum K 'L  is taken in a fixed separable closure of K).  

Proof: Let R c R1 be the maximal unramified subextension of R C S, and let 

K1 be the fraction field of R1. Thus the extension R1 C S is totally ramified, 

and its Galois group C is cyclic of order n prime to p. Let E1 be the Galois group 

of Rx over R. Thus we have an exact sequence 

1 --+ C -+ G -+ EI --+ 1. 

Also, the ring R is isomorphic to k[[x]] by [Ma, Cor. 2 to Theorem 60], because 

R is a complete regular local ring of dimension 1 containing a field (viz. Fp). 

Thus R1 is isomorphic as an R-algebra to kl[[X]], where kl is an E1-Galois field 

extension of k. 

Let R2 = R1 [~n] = kl [~n][[x]], where ~n is a primitive n th  root of unity in 

the separable closure of K,  and where n is the order of C (which is not divisible 

by p). By Kummer theory, the compositum R2S = S[r is given as an R2- 

algebra by R2[z]/(z '~ - ux), for some unit u E R2 (where this is the full ring of 

integers in its fraction field because z is a uniformizer). Let R3 = R2[ ~ ] .  

Then R3S ~ R3[y]/(y n - x). Also, since p does not divide n, R3 is ~tale 

over R1, and hence over R. Moreover R3S is Galois over S, and the natural 

surjection Gal( R3S/ R) -+ Gal( R3/ R) maps Gal( R3S/ R[y]) isomorphically onto 

Gal(R3/R). (Here we regard y as an element of R3S.) So the short exact sequence 

1 -+ Gal(R3S/R3) ~ Gal(R3S/R) ~ Gal(R3/R) ~ 1 

is split. There is a natural isomorphism Gal(R3S/R3) = Gal(S/R1) = C, 

and so we may identify Gal(R3S/R) with a semidirect product C>4 E3, where 

E3 = Gal(R3/R). The natural surjection Gal(R3S/R) --+ Gal(S/R) may thus be 

identified with a map C>~ E3---~G. 
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The surjections f :  F --+ G (with kernel P) and C)~E3--~G yield an exact 

sequence 

1 -+ P --+ F xc (C>qE3)s -+ i. 

This restricts to an exact sequence 

1 -+ P -+ g-I(E3)-~E3 --+ 1, 

regarding E3 as a subgroup of C )4 E3. By Corollary 3.3(c), cd v (Trl (Spec R)) < 1, 

and so the surjection Irl(Spec R)---~E3 corresponding to the E3-Galois ~tale cover 

SpecR3 --+ SpecR must lift to a homomorphism 7rl(SpecR) --+ g-l(E3).  Since 

g- l (E3)  is finite, this homomorphism factors through a finite quotient E '  of 

~rl(SpecR). Thus we have a surjection a: E'---~E3 which lifts to a map fl: E '  -~ 

g-l(E3),  and the quotient map ~l (SpecR)-~E '  corresponds to an E'-Galois 

6tale extension R ~ of R which contains R3. The surjections g: g-1 (E3)--~E3 and 

a: E ' -~E3 yield an exact sequence 

(3) 1 --+ P --} g-1(E3) XE3 E' --+ E' --+ 1 

which has a splitting (f~,id): E' -+ g-I(E3) XEa E'. 

Now R' is ~tale over RI whereas S is totally ramified over RI. So R'S is a 

totally ramified C-Galois extension of R'. As in the case of R3, the Galois group 

Gal(R'S/R) may be identified with a semidirect product C>~ E', and the natural 

surjection Gal(R'S/R)  ~ Gal(S/R) may be identified with a map C)~ E'---~G. 

The surjections f :  F ~ G and C)~ E'--~G then yield an exact sequence 

t 

(4) 1 -+ P -+ F x a  (C)~E')&~C)~E ' -+ 1. 

Identifying g ' - l (E ' )  with g-l(E3) XEa E' ,  the sequence (4) restricts to the split 

exact sequence (3). So by Lemma 5.8 (with A = P), it follows that the sequence 
(4) splits. Writing K '  = frac(R') and L = frac(S), we have that Gal (K 'L /K)  = 

Gal(R~S/R) = C)~ E'. So the desired conclusion follows. | 

Recall (from the beginning of Section 4) that if Y ~ X is a Galois cover, then 

we may consider an associated fundamental group 7rl(Y/X). 

PROPOSITION 5.10: Let R C S be a tamely ramitled Galois extension of complete 

discrete valuation rings of characteristic p. Let X = Spec R and Y = Spec S. 

Then c @ ( r l ( Y / X ) )  <_ 1. 

Proof: Let rl = 7rl(Y/X). The condition c@(H) < 1 is equivalent to the 

condition that  every finite p-embedding problem for 7rl(Y/X) has a weak solution, 
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by [Sel, I, 3.4, Proposition 16]. By Lemma 2.1, it suffices to restrict attention to 

finite embedding problems for II whose kernels are elementary abelian p-groups. 

So let s = (a: II--+ G, f :  F--+ G) be such an embedding problem, and let 

P -- ker f .  Then the surjection a corresponds to a pointed connected G-Galois 

cover Z ~ X which factors as Z --+ Z0 ~ X, where Z ~ Z0 is 6tale and where 

Zo -+ X is a Galois subcover of the tamely ramified cover Y --+ X. Thus Z -~ X 

is tamely ramified. 

Let K, L be the fraction fields of R, S respectively (regarded as subfields of a 

fixed separable closure of K).  By Lemma 5.9 there is a finite Galois field extension 

K C K'  such that  R' is ~tale over R, where R' is the integral closure of R in K'; 

and where the induced exact sequence (2) of 5.9 is split. Let X'  = Spec R ~. We 

may give X '  the structure of a pointed Galois 6tale cover of X; then X ~ Xx Z 

is a pointed 6tale cover of Z. Let Z p be the component of X'  •  Z containing 

the base point. Then Z' is 6tale over Z and Galois over X, with Galois group 

G p := Gal(K'L/K).  Thus there is a surjection a': II--~ Gal(K'L/K) that  induces 

the given map a: II---~G = Gal(L/K). We then obtain a commutative diagram 

1 , P  

1 , P  

II 

~ 
, FXGG' f' G' ~ 1 

, F  I , G  , 1  

with exact rows, where A: G'--~G is the natural quotient map; where 

A': F x c  G'---~F is the first projection and where Aa ~ = a: II---~G. 

Now the upper row is split, so there is a map/3 ' :  II --4 F x c  G ~ such that 

f'j3 ~ = a ' .  Thus/3  := A~/3': II --+ F satisfies f/3 = a: II -+ G; i.e. ~ is a weak 

solution to the given embedding problem s II 

If X is a regular connected pointed curve, and if E C X is a proper closed 

subset not containing the base point, then define the t a m e  f u n d a m e n t a l  g r o u p  

r t (X, 5]) to be the inverse limit of the Galois groups of pointed Galois covers 

Y --+ X with Y regular, tamely ramified over E, and ~tale elsewhere. Thus if 

X is projective, then this is the same as ~r~(U), in the notation of [Gr], where 

U = X - E .  

COROLLARY 5.11: Let R be a complete discrete valuation ring of characteristic 

p. Let X = Spec R and let ~ be the closed point of X .  Then cdp(~rl(X, {~})) _< 1. 
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Proof'. We wish to show that every finite p-embedding problem 

E t = (at: ~ (X ,{~} )  -~ C , f :  r - ~  G) 

for Try(X, {~}) has a weak solution. For such an embedding problem, the surjec- 

tion a t corresponds to a regular connected G-Galois cover Y -+ X that is tamely 

ramified over ~. There is a canonical map a: r l ( Y / X )  -+ G, corresponding to the 

cover Y. Since Y ~ X is tamely ramified over ~, the group 71" 1 (Y/X) is a quotient 

of 7rt(X, {~}), say via a map q: 7rt(X, {~})-~Trl(Y/X).  Moreover the homomor- 

phism a t factors as a t = aq. By Proposition 5.10, the p-embedding problem 

C := (a: 7rl(Y/X)  -+ G, f :  F --+ G) has a weak solution ~: I r l (Y /X)  ~ F. Thus 

~q: r~ (X, {~}) ~ F is a weak solution to ~t. | 

As a result, we obtain the following variant of Theorem 5.6: 

PROPOSITION 5.12: Let X be a connected normal affine curve of finite type 

over a field k of characteristic p, let r,s >_ O, and let ~1, . . . ,~r ,~1 , . . . ,~8  be 

distinct closed points of X .  Let P be a normal p-subgroup of a finite group F; 

let G = F /P ;  and let Y --~ X be a connected normal G-Galois cover which is 

tamely ramified over ~1,. �9 �9 (8 and 6tale away from ~1, . - . ,  ~r, (1,-. �9 ~8. For each 

j let Aj  be a F-Galois I~j-algebra, together with an isomorphism ( S p e c A j ) / P  -~ 

Y x x Spec ]Cr of G-Galois covers. 

Then there is a connected normal F-Galois cover Z ~ X which is tamely 

ramified over ( 1 , . . . ,  ~8 and 6tale away from ~1,...  , ~ ,  (1 , . - . ,  ~8, together with 

compatible isomorphisms Z / P  ~ Y as G-Galois covers and Z • x SpeclC~j 

Spec Aj as F-Galois covers. 

Proof'. For each i = 1 , . . .  ,s, the pullback Y~ := Y Xx Spec0x,r --+ Spec0z,r 

is a tamely ramified G-Galois cover of regular curves. By Corollary 5.11, there 

is a normal tamely ramified F-Galois cover Zi --4 SpecOx,r that dominates 

the G = F/P-Galois  cover Yi --+ Spec0x,r Let Zi = SpecBi ~ SpecIC(~ 

be the generic fibre of Zi -4 Spec(Px,r Thus Bi is a F-Galois /Cr 

and Z i / P  ~ Y Xx  SpecICr as G-Galois algebras. By Theorem 5.6, applied 

to the set ~ := {~1,... ,(~,~1, .--,~8} C X, we obtain a connected normal F- 

Galois cover Z --+ X which is 6tale away from Z, together with compatible 

isomorphisms Z / P  ~ Y as G-Galois covers, and Z x x  S p e c ~ r  ~ SpecAj (for 

j = 1 , . . .  , r )  and Z Xx SpecK:~, ~ S p e c B j  (for i = 1, . . .  ,s) as F-Galois covers. 

Since Zi ~ Spec Ox,r is tamely ramified, Z -~ X is as desired. II 

Remark 5.13: If k is separably closed, then the assertion of Proposition 5.12 

remains true even if X is projective, provided that Z is no longer required to 
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be connected. This follows by replacing Theorem 5.6 by Remark 5.7(a), in the 

above proof. This variant of 5.12 can be regarded as a generalization of [Ka, 

Theorem 2.1.6] to the case of more than two branch points (but stated just for 

one group at a time, rather than for ~rl). II 

Combining the above proposition with Theorem 3.11, we obtain the following 

theorem, referred to at the end of Section 4. It implies and subsumes Theorems 

3.11 and 4.3 in the case of normal curves X. Namely, those results respectively 

assume that  the given G-Galois cover Y --4 X is either ~tale or is of degree prime- 

top .  The result below for curves, though, merely assumes that Y ~ X is tamely 

ramified. Note that  the data  over the points ~j is non-trivial only in the case 

that  the base field k is not algebraically closed, which is thus the case of main 

interest. 

THEOREM 5.14: Let X be a connected normal a/fine curve of  finite type over 

a field k of  characteristic p, let r, s >_ O, and let ~1,. .- ,~r,  ~1, . . . ,  ~8 be distinct 

closed points o f  X .  Let P be a p-subgroup of a finite group F; let G = r / P ;  and 

let Y -+ X be a connected normal G-Galois cover which is tamely ramified over 

~1, . . . ,  ~8 and 6tale elsewhere. 

Let Z '  -+ X '  :-- {~1,... ,~r} be a F-Galois ~tale cover together with an isomor- 

phism Z ' /  P ~ Y • x X '  of  G-Galois covers. Then there is a connected normal 

P-Galois 6tale cover Z -~ Y such that the composition Z -+ X is a tamely ram- 

ified F-Galois cover Z -+ X which is ~tale away from ~ l , . . . , ~ s ,  and such that 

Z •  X '  ~ Z '  as F-Galois covers. 

Proof." L e t U  -- X - {~1,... ,G} and let V -~ U be the pullback of Y -+ X over 

U. Applying Theorem 3.11 to V -+ U and to the cover Z ~ -~ X'  -- {~1,... ,~r}, 

we obtain a connected normal F-Galois ~tale cover W -+ U that dominates 

V -~ U and whose restriction to X'  is Z' -+ X ~. Thus for each j the fibre over 

Xj := {~j} is Zj := Z'  Xx, Xj -+ Xj. The pullback of W -+ U over the complete 

local ring at ~j is a F-Galois ~tale cover of the form Spec -4i -+ Spec 6x,ej ,  where 

.4j is a finite product of complete discrete valuation rings. Here the closed fibre of 

Spec Aj -+ Spec (~x,~j is isomorphic to Zj --+ X i as a F-Galois cover, and there is 

a compatible isomorphism of G-Galois covers of Spec 6x,~j between (Spec .4 j ) /P  

and the pullback of Y. 

The generic fibre of Spec.4j -+ Spec 0x,~j is of the form Spec Aj -+ Spec/C~, 

and there is an isomorphism ( S p e c A j ) / P  -~ Y X x  Spec/C~j of G-Galois covers. 

By Proposition 5.12, we obtain a connected normal r-Galois cover Z -~ X which 

is tamely ramified over ~1, . . . ,  G and ~tale away from ~1,... ,~r, ~1, . . . ,  G, and 
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which compatibly induces the G-Galois cover Y -+ X modulo P and induces the 

F-Galois covers Spec Aj --+ Spec ]C~j via pullback. The pullback of Z --+ X over 

Spec Ox,~ thus has the same generic fibre Spec Aj --+ Spec ]C~j as the ~tale cover 

Spec,4j --+ Spec0x,e~. Since Z is normal and is finite over X, it follows that  

these two G-Galois covers of Spec Ox,f~ agree. Hence the closed fibre of Z over 

Xj -- {~j} agrees with Zj --+ Xj as a F-Galois cover (and so Z Xx X'  agrees with 

Z~), and Z --+ X is ~tale over X ~. Thus Z --+ X is tamely ramified, and hence so 

is the intermediate P-Galois cover Z --+ Y. Hence Z --+ Y is ~tale, since P is a 

p-group. So Z is as desired. | 

Reinterpreting the above results in terms of embedding problems, we obtain: 

COROLLARY 5.15: Let X be a connected normal affine curve of finite type over 
a field k of characteristic p, let $ be a proper closed subset of X ,  let r >_ O, and 

let ~1, . . . ,  ~r be distinct closed points of X -  Z. Let Gk(e~) be the absolute Galois 

group of the residue field k(~j). 

(a) Let Ct __ t'cCtl",jJ3 where. ~)j:t ek(~j) ._+ 7y~(X,~) corresponds to the inclusion 

{ ~j } ~-+ X - Z. Then every finite p-embedding problem for Ir~ ( X, ~,) is properly 
Ct_solvable. 

(b) Let Y -+ X be a connected normal Galois cover that is tamely ramified 

over ~ and dtale elsewhere. Let Cy = {r where Cv, j: Gk(~j) --+ ~rl(Y/X) 
corresponds to the inclusion {~j} ~-+ X - ~. Then every finite p-embedding 

problem for ~rl (Y /X)  is properly Cy-solvable. 

Proof: (a) Let s = (a: ~rl(X, ~) --+ G, f:  F --+ G) be a finite p-embedding 

problem for Ir~ (X, ~). Then the surjection a yields a connected normal G-Galois 

cover of X which is tamely ramified over Y], and ~tale elsewhere. A weak solution 

to the induced embedding problem Ct.(~) yields F-Galois ~tale covers Zj --+ 

Xj := {~j} that  dominate the pullbacks Yj --+ Xj of Y --+ X. By Theorem 5.14 

there is a connected normal F-Galois cover Z --+ X that is tamely ramified over 

and ~tale elsewhere; that  dominates Y =-+ X; and that restricts to each Zj -+ Xj.  

Just as in the remarks prior to Proposition 3.1, such a cover corresponds to a 

proper solution to g whose compositions with the component maps Ct: Gk(~) 

~rt(X, Y],) are conjugate to proper solutions of the pullbacks Ct*(E). So s is 

properly Ct-solvable. 

(b) Let s = (a: 7rl(Y/X) -~ G,f:  F -+ G) be a finite p-embedding problem for 

7rl (Y/X) .  Consider a weak solution to r corresponding to F-Galois ~tale 

covers Zj --+ Xj  := {~j} that dominate the pullbacks Y/ -:+ Xj of Y --+ X. 

As in the proof of Proposition 5.10, the surjection a corresponds to a pointed 
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connected normal G-Galois cover Z --+ X which factors as Z --+ Z0 --+ X, where 

Z --+ Z0 is ~tale and where Zo -+ X is a Galois subcover of Y -+ X. Thus 
Z -+ X is tamely ramified over ~ and ~tale elsewhere; and so it corresponds to 
a surjection (~t: Try(X, E) --+ G (factoring through a). By (a), there is a proper 

solution to the p-embedding problem ~t := (o~t: 71"~(X, ~) --~ G, f :  F --+ G) which 

up to conjugacy induces the given weak solution to r163 Such a solution 

corresponds to a connected normal P-Galois cover W -+ X which dominates 

the G-Galois cover Z --+ X, such that W --+ Z is 6tale, and which restricts to 

each Zj --+ X j .  Thus the F-Galois cover W --+ X factors as W --+ Z0 --+ X, 

where W -+ Zo is 6tale (since W + Z is at most tamely ramified, and is Galois 

of p-power degree). Hence W corresponds to a proper solution to the given p- 

embedding problem $, inducing the given weak solution to r ($) up to conjugacy. 

So s is properly Cy-solvable. | 

The following corollary provides a variant of Corollary 3.3(c) in the tame case, 

and a generalization of Proposition 4.1(a) to the case that the given cover Y --+ X 

need only be tame (rather than prime-to-p). The base space X, however, is 

assumed here to be a curve. 

COROLLARY 5.16: Let X be a connected normal aff/ne curve of finite type over 

a field k of characteristic p, and let ~ be a proper closed subset of X .  

(a) Then cdp(~r~(X, ~))_< 1. 

(b) Let Y --+ X be a connected norma/Galois cover that is tamely ramified over 

and ~tale elsewhere. Then cdp(~rl ( Y / X )  ) <_ 1. 

Proof: Taking r = 0 in Corollary 5.15 (so that Ct [resp. Cy] is the empty 

collection), we obtain that every finite p-embedding problem for ~r~ (X, Z) [resp. 

for ~rl(Y/X)] is properly solvable, and hence weakly solvable. So the assertion 

that cdp < 1 follows from [Sel, I, 3.4, Prop. 16]. | 

Remark 5.17: (a) In Sections 3 and 4, it was first proven that ~h(X) or ~rl(Y/X) 

(in the prime-to-p case) had cdp < 1, and then that was used in showing that 

every finite p-embedding problem was properly C-solvable (in Theorems 3.11 and 

4.3, and Corollaries 3.10 and 4.2). But in the present section, in the case of curves, 

it was not known a priori that the relevant cdp <_ 1. Instead, the prior strategy 

was reversed above: first proving that every finite p-embedding problem for ~r~ (X) 

and ~rl(Y/X) (in the tamely ramified case) is properly C-solvable (Theorem 5.14 

and Corollary 5.15), and then deducing (in Corollary 5.16) that cdp _< 1. 

(b) It would be interesting to know if Theorem 5.14, and Corollaries 5.15 and 

5.16, have higher dimensional analogs (e.g. having hypotheses of tame ramifica- 
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tion at points of codimension 1). Such analogs would strengthen the main results 

of Sections 3 and 4, which assumed either that there was no ramification, or that  

the given cover Y --+ X was of degree prime-to-p. | 
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